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Abstract

By employing the complex variable method and constructing the particular solution sequences in the form
of complex functions, all the cases of the thermal residual stress field near the apex in dissimilar materials
bonded with two arbitrary angles are researched theoretically, and the corresponding classical solutions are
obtained. Moreover, the primary paradox, the secondary paradox and even the triple paradox are discovered
in the classical solutions and also resolved here, thereby it is confirmed that thermal residual stresses near
the apex in bonded dissimilar materials probably possess the singularities of Inr (when the primary paradox
occurs), In’r (when the secondary paradox occurs) and even In’r (when the triple paradox occurs). In
addition, the systematic method to solve multiple paradox problems is put forward. ) 1999 Elsevier Science
Ltd. Ali rights reserved.

1. Introduction

For the structures jointed with different isotropic homogeneous elastic materials, thermal
residual stresses develop during the cooling-down process in manufacture due to the difference in
thermal expansion coeflicients of these materials. These stresses may lower the strength of bonded
dissimilar materials, and sometimes give rise to damage in them, it is therefore necessary to
nvestigate theoretically the distribution and the singularities of thermal residual stresses near the
apex in bonded dissimilar materials. Mizuno et al. (1988) and Suga et al. (1989) studied thermal
stresses in two dissimilar materials jointed together with right angles (90°/90°), and came to the
conclusion that the order of singularity developing under thermal stress loading is the same as that
under mechanical loading. However, by applying the boundary element method and analyzing
numerical results, Yuuki and Xu (1992) and Yuuki et al. (1991) found that logarithmic singularities
may develop at the apex under thermal stress loading. The preliminary theoretical research on
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thermal residual stresses near the apex in bonded dissimilar materials made by Xu and Mutoh
(1996) confirmed the above discovery, but they did not make further investigations so as to clarify
the whole situation of the problem. In addition, for two dissimilar materials jointed together with
right angles or with two arbitrary angles 6,(>0) and 6,(<0), Munz and Yang (1992) and Munz
et al. (1993) discovered that the thermoelastic constant stress terms o, (i.€., the classical solutions
of thermal stresses) approach infinity for a combination of the elastic constants leading to a stress
singularity exponent » = 0, this is a paradox. For the special case of a free straight surface, i.e.,
6,—6, = 180°, Ioka et al. (1996) also discovered that the paradox exists for the thermoelastic
constant stress terms o4, they pointed out that logarithmic free edge stress singularity appears for
thermal residual stresses when the paradox occurs, and demonstrated numerically the conclusion
by using the boundary element method.

In this study, we employ the complex variable method, by constructing the particular solution
sequences in the form of complex functions (Ding et al., 1998), all the cases of the thermal residual
stress field near the apex in dissimilar materials bonded with two arbitrary angles are researched
theoretically, and the corresponding classical solutions are presented. Moreover, the primary
paradox, the secondary paradox and even the triple paradox are discovered in the classical
solutions, the solutions for the paradox are also obtained here, from which it is confirmed
that thermal residual stresses near the apex in bonded dissimilar materials probably possess the
singularities of Inr (when the primary paradox occurs), In’s (when the secondary paradox occurs)
and even In*r (when the triple paradox occurs). The discovery of the triple paradox is for the first
time, and the systematic method to solve multiple paradox problems is also put forward in the

paper.

2. Model of the problem and basic equations

The model of dissimilar materials jointed with two arbitrary angles 8, and 6, is shown in Fig. 1,
then the boundary conditions are

At =10 0,4(.0)=0, 1,0(r.0)=0 (j=12) : (1)

where the subscript j stands for the two materials. Supposing that the structure is cooled down

Material 1

0 Interface

Material 2

Fig. 1. Dissimilar materials jointed with two arbitrary angles 8, and 0,.
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from a stress-free state, the resulting temperature difference is A T, which is defined as negative for
cooling conditions, the thermal expansion coefficient for material j is o,(j = 1, 2), thus the con-
tinuous conditions for the stresses and displacements at the interface are given by

at 0=0: 064(r,0) = 05(r,0), 71,6(r,0) = 72,4(r,0) (2a)
U, (r,0) = 1, (r,0) + (a5 —aP)AT 1, uy(r,0) = uzy(r, 0) (2b)

where

. {(1 +v;)a, for plane strain 3)

7

o for plane stress

J
v(j = 1,2) being the Poisson’s ratio of material j, u,(r, 0) and u,(r, 0) are the displacements caused
by thermal residual stresses g,,(r, 0), g(r, 0) and 1;,(r, 6).

Following the complex function theory of Muskhelishvili (1953), we can write the displacements
and stresses for each material, in term of two complex potentials ¢(z) and ¥,(z) (j = 1,2) as

0, — it = 9(2)+ 0/(2) — e [20(2) + ¥}(2)] “4)

G+t = QU2+ @)(2) + e (2] + ()] (5)

2, + i) = e [1,0,(2) — 207(2) — ¥ (2)] (6)
where

3 —4v; for planestrain

K: =<(3—vy.
TN for plane stress %
1+ Vi

#(j = 1,2) being the shear modulus of material j, ¢,(z) and ¥,(z) are the complex conjugates of
@{z) and Y,(z) (where z = re®), respectively.
We assume
92) =z(4;+ C,Inz+E;In*z2+ G, In’z+ M, In*z
s R Ca } (j=12) (8)
Y(z2) = z(B;+D;Inz+ F,In"z+ H;In’z+ N, In*z)

where 4, B;, ..., M;and N, are complex constants.

Substituting (8) into (5) and (6), one obtains
0o+ iT,y =(M;+M,+e*N) In*r
+(G,+ G+ 8M,+4M,+4i0(M,— M,+€**N) + ¢ (H;+4N )] In*r
+{E+E,+6G,+3G,+12M,+ 310G, — G, + 8M, —4M, +¢**(H,+ 4N))]
—60°(M;+ M;+e**N)) +¢**(F,+3H,)} In*r+ {C;+ C,+4E,+ 2E,+ 6G,
+20[E;— E/+6G,— 3G, + 12M,+ ¢** (F,+ 3H,)] — 36°[G, + G, + 8M,+4M,
+e*(H;+4N)] —4i0° (M, — M,+&*N) +e*(D,+2F)} Inr+ 4,+ 4, +2C,
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+C,+2E,+i0[C,— C,+4E;— 2E,+ 6G,+€**(D;+ 2F))] — 0*[E; + E; + 6G,
+3G,+ 12M,+€**(F,+ 3H)]| — i0°[G,— G, + 8M,— 4M,+¢**(H,+4N))]
+04(M;+ M;+e*"N,)+e**(B;+ D))

241,10+ itty) = (M, — M;—e™>"N))rIn’r
+[k,G,—G,—4M,—e " H,+4i0(c,M,+ M, +¢ ¥ N)rin*r

®

+[E, —E,—3G,—e ' F,4+3i0(c,G,+ G, +4M,+e *"H)) —60° (1, M,— M,
—e PN )rin’r+ [k,C;— C,— 2E,— e **D, 4+ 2i0(x,E,+ E,+ 3G, + ¢ *"F))
—30%(k,G, ~ G, —4M,—e 2" H,) —4i0> (x,M;+ M, +e *"N)rInr+[x,4,

~4,—C,—¢ "B, +if(,C;+ C;+2E,+¢*"D)) —6*(x,E,— E,~ 3G,

—e FF) —i0° (kG + G, +4M, e H ) + 04, M, — M, —e N )]r

(10)

The applications of the boundary conditions (1) and the interface conditions (2a), (2b) to (9)

and (10) yield
Ni= —(M+M)e
H = —(G,+G,+4M,—8i0,M)e "
Fy = =(E+E+3G,—66,G,~ 246} M) e *") (j=1.2)
D;= —(C;+C,+2E,—4i0,E, — 120} G, +32i0; M) e *"
B, = —(4;+A,+C,—2i0,C,— 407 E,+8i0]G,+ 160} M) e~
(M + M) (1—e™") = (M, + M,)(1—e*")
(G + G, +4M,)(1—e*®) —8if, e*"' M, = (G, + G, +4M,)(1 —e**2) — 86, e*: M,
(E, +E, +3G)(1—e*)—(6i0,G, — 2407 M) 2
=(E, +E, +3G,)(1—e*") — (6i0,G, — 2403 M,) e
(C1+C+2E)(1—e*®)—(4i0, E, — 120G, — 32i0} M) e
=(C, + C, +2E,)(1 &) — (4i0, E, — 1203G, — 32i03 M, ) 2>
(A, + 4, +C)(1 —e*) —(2if, C, — 462 E, —8i6>G, + 160° M) e
= (4, + 4, + C)(1 =) — (2i0,C, — 463 E, —8i03G, + 1604 M, ) e

Ki+1 1-I — 4
M4 — __ 2l
Kot 1 ;+K2+1(M1+M1(1 e"")

Mz::r

(1)

(12a)
(12b)

(12¢)
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1 1-T )
G, = FKH— G+ —— [(Gl—+—G, +4M1)(1—ez’91) 8if, e* 1 M,]
Ko+ 1 Ko+ 1
K41 1- o210 . 2 200
E, =FK +1E1+ 1 [(E1+E1+3G )(1 1) —(6i0,G, —240; M) e*"1]
2 K
K +1 1-T N 2i0
= C,2E)(1 —e*™
G, rK2+1C1+K2_+_1[(C1+ 1 (1 —e*r)

—(4i0,E, — 120G, —32i0; M) e*"]

K, +1 1— .
A, =r:1+l L+ 2+1[(A (A, +C(1—e¥) —(2i0,C, —462E,
.13 4 2i0 2ﬂ2 *
—8i3G, + 160 M,) ¥ — 2 (a¥—aP)AT (13)
Ky +1

where I' = u,/u,. Equations (11) are derived from the traction-free conditions (1); equations (12)
from (2a), the stress continuous conditions on the interface € = 0, and with the applications of
(11); equations (13) from (2b), the displacement continuous conditions on the interface 6 = 0, and
with the applications of (11) and (12).

The procedure to solve the above basic equations is: getting first the constants M), G;, E;, C; and
A; one by one from equations (12) and (13), then from eqns (11) the constants N,, H;, F,, D, and
B, can be obtained.

Noticing that eqn (12a) 1s actually a set of linear homogeneous equations about two real
constants M, + M, and M,+ M,, the coefficient determinant of which is

A =(1—cos28,)sin 20, — (1 —cos28,) sin 28, = 4sin b, *sind, *sin(f, —6,) (14)

when A # 0, M,+ M, = 0 and M,+ M, = 0, while when A = 0, non-trivial solutions may exist for
M, + M, and M,+ M,, hence we make discussions separately for the case of A # 0 and of A =0
below.

3. The particular solutions when A # 0
3.1. The classical solution

In this case we can take E, = F; = G, = H;= M; = N; = 0, (j = 1,2). Solving eqns (12) and (13),
ind from eqns (11) one obtdms

Cl = @)j;;—i—l —!Xl)AT A
Ai+A4, 1 2,
270, Kt l( ¥—oP)AT[Q, sin 26, —Q,(1 —cos 26,)]
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N 7P Ky +1
C=ig o Ko+ 1
Ko+l A -4, 1 2 _
4, =T ;+1 S (—a—l-Kz’jfl(a;—af)AnQ, §in 20, — 0, (1 —c0s 26,)]
L e [Q sin 260, — 0, (1 —cos 26,)] sin 20
l®] Kyt 1 1 2~ 2 2 1
+A(1—cos 26, —20, sm20,)}
D] = Dz =
1 4 |
B = — — 2 (ax_aHAT{[O, sin 20, — Q5 (1 —c0s 26,)] + (i—26,)A} e~
@] K2+1
1 4 *_ %
— o _ T
B, 0, K2+1(°‘2 af)A

. {[Q1 §in 20, — 0, (1 —cos 20,)] + (i— 26, )rgﬂA} .

where
K +1 . .
0, = ] —sin 20, + 26, cos 20,) — (—sin 26, + 26, cos 26,)
2
0, =TI — 20, sin 26,) — (1 —cos 20, — 20, sin 20,)

K, +1 - .
0, = [FK;+1 +2 2+1\1—00320 )} [Q; sin 20, —Q,(1 —cos 26,)]

: —I .
—[Q,sin26, —Q, T —sin 26, + 20, cos 26,)A
then from (8) we have
A —A, A +A
@ (z) = '2 Lo+ 12 Lz4Czlnz d ©,(2) =A22+szlnz}
an
wl(Z) — B Z W2(Z) = BZZ

(15)

(16)

(17

(18)

where 4, —A4, /2 is an arbitrary imaginary constant, its related terms represent a rigid body

rotation. Equation (18) is just the classical solution.
Substituting (18) into (4), (5) and noticing C;+ C, = 0 yields
O — ity = [1 4+ ][4+ A, + (14 2i0,)C,]+2i(0—6,)C;—2C;

. _ i=1,2
O+t = [1—e* 0] [4,4+ A4, + (1+2i0,)C,] +2i(0—0,)C; } ¥ )

(19)



Ding Haojiang, Peng Nanling | International Journal of Solids and Structures 36 (1999) 5611-5637 5617

Equations (18) and (19) are valid only when ®, # 0, on this condition the expression (19), which
is a particular solution of thermal residual stresses, does not contain Inr terms, namely, the
logarithmic singularity will not appear.

Introducing the Dundurs’ parameters (Dundurs, 1969)

a=r(’€1+1)*(’€2+1) ﬁ=F(K1—1)—(K2"1)
I, +D)+ (ko +1)° Ik, +1)+(x2+1)
hence
k,+1 14+a 1-T p—ua
Kf+l=]“a’ Ky+1:1—a
we can rewrite eqn (17), the expression of @, as
2
(-
—(1+a)(l —a)* [1—cos26; —cos 20, +cos 2(0, —0,)+ (0, —0,) sin2(0, —6,)
—0, sin26, — 6, sin 20,]+ 2(f —a)[(1 +2a)(1 —cos 26, — 6, sin 20,)(1 —cos 26,)
—(1—a)(1 —cos 26, —0, sin26,)(1 —cos 6,)]} 21
Analyses and calculations demonstrate that when (0, —0,) > 45° (for plain strain) the value of

0, is zero for some special combinations of the geometry angles 6,, 8, and the Dundurs’ parameters
%, B. Actually, by setting @, = 0, we get

B=a—{(1+a)’(1 —cos26,—6,sin20,)+ (1 —a)*(1—cos 20, — 0, sin 26,)
—(1—a?)[1 —cos 268, —cos 20, +cos2(8, —0,) + (6, —8,) sin 2(8, —0,)
—@, sin 20, — 0, sin 26,1} /{2[(1 + 2)(1 —cos 28, — 8, sin 26,)(1 — cos 26,)
—(1—a)(1—cos 26, —6, sin26,)(1 —cos 26,)]} (22)
Based on (22), some curves on which @, equals zero are shown in Fig. 2.

(20a)

(20b)

0, = {(14+®)*(1 —cos 20, — 0, sin 20,) + (1 —a)*(1 —cos 26, — 6, sin 26,)

: s 0 oy ; % g0°
04 (185° 0 °)“5° QL] 8(1)555"'-33")
0.3 N Q] TN ~807)
02 /1L Ae2s%e0°)
0.1 . \

@, 0 i \

01 T
0.2 ] 0
a2 jo* g5y | (135 °90°)
04 D 1,02)

0

| 1 1 5 1'90 10) 1 I
-1 48 06 04 0.2 0 0.2 04 0.6 0.8 1
o

Fig. 2. Some combinations of the geometry angles and the Dundurs’ parameters for ®, = 0.
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When ®, = 0, the classical solution (18) becomes infinite, this is a paradox, and the expression
(19), the stresses in which are called the regular stress terms by Munz et al. (1993), breaks down.

3.2. The primary paradox solution (when ®, = 0)
Taking G, = H;= M;= N, =0, (j = 1,2). From eqns (12¢) and (13) we have E;+ E; = 0 and

1
I“'_Cl_j_;EI

Ky + 1

K, +1 1 — | )
C, = FK;+1 Cit o [(C] +C(1 =) —2E, (1 —e¥™ 421, e2)]

2
Lkt 1-T — - Cc,—-C, . o

AZ_FK2+1A1+K2+1|:(A1+Al)(1_e )——__—2—(1_e V420, €2

C,+C, o2, 2wy

e 2 2 2161 2 2101 ot
IR O e AT |-y (e DAT (23)

Substituting (23) into (12d) and (12e), then separating the real parts from the imaginary parts,
we obtain

bll'(Cl+El—)+b]2'2Eli:0 (24a)
by, (C,+C)+by,*2E i =0 (24b)
— C,-C, C,+C,
by (A +A4)+by- ]2 ]i+b13' ]2 l+b14'E|i
— M mAT( —cos20,)  (250)
K, +1 ! 2
— c,—-C, c,—C,
by (A +A4))+byy e 12 i+bys- ]2 L byt Ei
= M yATsin20, (25b)
K+ ! 2
where
G+1  _1-T
by = (1—c0820,)—(1—cos260,) | ! —
= 1) —(1~—cos 2)[ K2+1+2K2+1(1 008291)}

K|+1+
Ko+ 1 K>+ 1

b,, = sin 26, —sin 26, [I“ (1 +cos 26, ):l

K, +1

Kr+1

&
!

(—sin 20, + 20, cos 26,) — (—sin 26, + 20, cos 26,)
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1-T
+2 —ﬁ(—sinZH, +26, cos26,)(1 —cos 20,)
K

by, = K' j:~(l —c0s 20, — 26, sin 20,) — (1 —cos 26, — 20, sin 20,)
1-T ) )
+2 1'(—sm261 +26, cos 28,) sin 26,
K

K, +1
K2+l

by = (1 —c0s20, 426, sin260,) — (1 —cos 20, + 26, sin 26,) [F

T _
] [(1—cos 26, 426, sin20,)(1 —cos 20,)

2
<

1-T
+2;€7F7(1_C05201)]_

—sin 20,(—sin 26, + 26, cos 28,)]

. ) K, +1 1-T
b,y = (sin 26, +20, cos 20,) — (sin 26, + 20, cos 20,) P 2K w ;
2 2

1-T .
——2—~»ﬁ [1—cos26, + 20, sin 26,) sin 28, —sin 20, (1 —cos 26, — 26, sin 20,)]
K

+1 . 1-T .
p— - 403 sin 20, —ZK2+1 [407 sin 20, (1 —cos 20,)

+ (1 —cos 26, —28, sin 20, )( —sin 20, + 26, cos 26,)
—(—sin26, + 26, cos 26,)(1 —cos 26, + 26, sin 26,)]

b14 - 49% Sln 201 '—F

1 -r_ . )
by, = 407 cos 20, —T il +—-49% cos 20, [467 sin 28, sin 20,

K>+ 1 B K-3+1
+ (1 —cos 26, —26, sin 20,)(1 —cos 26, — 20, sin 20,)
—(—sin 26, + 26, cos 20, )(sin 26, + 26, cos 26,)] (26)

end the following relations exist: by, *byn—5y b, = O, by;sin20,— b, (1 —cos260,) = A and
1281026, — b,y (1 —cos 26,) = Q, sin 26, — Q,(1) —cos 20,).

Noticing ©, = b,;b,,— b, b, = 0 and making use of eqns (24), the constant £, can be obtained
tarough subtracting (25b) multiplied by &,, from (25a) multiplied by b,,, and the constant C,+ C,/2
tarough subtracting (25b) multiplied by b,, from (25a) multiplied by b,,, the results are

I 4
El—l®., K‘2+1( ‘—OC])ATA
C,+C 1 4y
2 - o, K3+l( ¥—aPHAT-[Q, sin 28, — O,(1 —cos26,)] 27
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©; = byybis —biobys —bybist b1 1B (28)
Substituting (27) into (25) yields

1 4
bn{ml Ao 2";1(*—a1)AT [bmsmzez—bu(l—coszoz)]}

c,-C,, 1 4 :
+b12{ 12 'i+®—2'K2!_l:1(oc’z"—a’l")AT'[b”sm292—b23(1—cos292)]}———0 (29a)

1 4
{(A‘ +A ) @ » 'l::izl (O(’Z*—OC’]")AT‘ [b14 Sin202—b24(1——008292)]}
2 2

C,-C,. 1 4
+bsy, {——15—‘1'+ @Tkzizl( 2% —a¥)AT- [by sin 26, — b23(1—cos262)]}=0 (29b)

Subtracting (29b) multiplied by (1 —cos 26,) from (29a) multiplied by sin 26,, one obtains

4
{(A +A)— g ’f:l( af—a AT [bMs1n202—b24(1—cos292)]}
2 2
+[Q; sin 20, — Q, (1 —cos 26,)] (30)

7 e, G+

Cc, -C, 1 4
{ L=l ta (a’z“—oz;")AT-[bmsin292—b23(1—cos202)]}=0

Because ®, = b,b,,— b, by, = 0, only one is independent among the three equations (29a), (29b)
and (30). Furthermore, noticing A # 0, hence eqn (30) is independent of the other two, from it
one obtains

¢-G 1k0A+z©% Kj’_‘:l (¥ —a¥)AT " [b,; sin 20, —b,3(1 —cos 26,)]
A+ A, = ko[Q, sin20, —Q,(1 —cos 26,)]
L 4 *_ ok H
—@!- . (X —aF)AT  [b,4sin 20, —b,,(1 —cos 26,)] 3D

where k, is an arbitrary real constant.
The complex constants E, C, and 4, can be derived from (23), then from (11) F; = 0 and D,, B,
can be achieved. Finally, from (8) the solution for ®, = 0 is

A, —A, A, +A4,
0,(z) = 12 Loy ]2 L4 Cyzlnz+E, zIn’z

V,(z) = Byz+Dzlnz (32a)
@2(z) = Ayz+ Cyzlnz+ E,zIn?z
V,(z) = Byz+DyzInz (32b)
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where 4,—A,/2 is an arbitrary imaginary constant, and the terms related to the arbitrary real
constant k, represent a homogeneous solution. Equation (32) is just the solution for the paradox,
which can be called the primary paradox solution.

Substituting (32) into (5) and noticing E,+ E, = 0 yields

Gt ity = [1 == {[(C;+C) +2(1+ 210, E] Inr+i6+ 1)+ 4,4+ 4, + C,
—2i0,C;+462E)} +4i(6—0)E,(Inr +1-10) ~20(0-0)C, (j=12)  (33)

't is observed that the singularity of Inr appears in thermal residual stresses.

However, analyses and computations demonstrate that the value of @, still possibly equals zero
‘when ©, = 0, and this may occur for (8, —8,) > 101.24°. For instance, if 8, = 105°, 8, = —90°,
o =0.8734, § = 0.4314, then ®, = 0 and ®, = 0, thereby the primary paradox solution (32) is still
‘nfinite, this is the secondary paradox.

3.3. The secondary paradox solution (when ©, = @, = ()

Taking M; = N, = 0, (j = 1,2). From equations (12b) and (13) we have G,+ G, = 0 and

Lkt
G, Ky + 1 1
Ky +1 1-T - , ‘ .
E, = FK;+1 E, + — [(E;+E)(1—e*)—3G, (1 —e*™ +1+2if, e*1)]
K, +1 1-T — ) — ) .
C, = FK;+1 Cit —7lC +C)(1—e*)—(E, —E,)(1 —e*® 42if,e2%)

+ (E, —+—El—)(] 2t —2i0, 62[9')+G1 - 120? eZiﬂl]

K, +1 1-T — . C,—C, . ‘
A, =T A ety __ 1 Ml L2 0 W2i0)
2 P R I [(A1+A1)(1 e 5 (1—=e*"+2i, &)

C,+C, _ N | |
+ IT—I (1—e* —2if, **1) + E, - 407 21 4 G, - 8if) ez,a,:|
2,
Tt 1 T eDAT a4

Substituting (34) into (12c), (12d) and (12¢), then separating the real parts from the imaginary
parts, we obtain

by (Ey+E)+b,,3G,i=0 (35a)
by (Ey+E\)+b,,-3G,i =0 (35b)
by, +(C, +a)+b12 (E, _El_)l""bm (E, +E)+b14 *3G,i=0 (36a)

by, *(C, +C—1)+b22 (E; —E_l)i+b23 “(E +E_1)+b24 *3G,i=0 (36b)
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_ C,—C, C,+C; E —E,
by (4 +A4,)+by>* : ]i+b13'u] 3 i+b14' I B L
E, +E 3 4u
+byse ,ITI b5 Gii= — 2+21( ¥ _a¥)AT(1—cos20,) (37a)
. Cc,—C, C,+C, E,—E,
by (A +A,)+by et L i+bss e +by4 '“l—“*]‘i
2 2 2
E+E, 3 . 4u
b,5-~'Ti b26-5611=—m+21( a¥—o¥)ATsin20, (37b)
where
, ) K+l 1T , 1T
_ _ Jr (1 — —
b, s = 407 cos 28, 49200526_[ . +2K T (1 —cos26,) |— K2+1
- [403 cos 20, (1 —cos 26,) — (sin 20, + 26, cos 20,)(—sin 26, + 260, cos 26,)
+ (1 —co0s 26, +20, sin20,)(1 —cos 20, + 26, sin 260, ) + 463 sin 20, sin 20,]
5 . . . 1 1-T 1-T
h,s = —487 sin 20, + 405 sin 20, FK1+ +2 (1—cos28,) [-2—
K.+ 1 Ky, +1 K+ 1

- [407 cos 20, sin 20, — (sin 20, + 26, cos 26,)(1 —cos 20, — 20, sin 20,)

+ (1 —cos 20, +20, sin 20,)(sin 26, + 20, cos 26,) + 463 sin 26, cos 26,] (38a)
2 h +1 -I .
bie = {80] cos 260, — ;-H - 803 cos 20, — m[lﬁv()i cos 26, (1 —cos 26,)

— 1267 cos 20, (—sin 26, + 26, cos 26,) + 1267 sin 26, (1 —cos 20, + 26, sin 26,)

—12(1 —cos 26, —26, sin 26,)03 sin 20, — 12( —sin 20, + 20, cos 26,)03 cos 292]}

2 ) Ky +1 ) -~ .
by = 3 {——80? sin 26, +FK_; 1 - 803 sin 20, — P [1667 cos 20, sin 20,

—126% cos 26, (1 ~cos 26, — 26, sin 26,) + 1267 sin 20, (sin 26, + 20, cos 26,)

—12(1 —co0s 28, — 26, sin 20,)03 cos 20, + 12(—sin 20, + 20, cos 26,)03 sin 292]} (38b)

Applying the method similar to that in 3.2 to solve the set of eqns (35)—(37), and noticing
0, =0, =0, we get
2 A
30, k,+1

G, =i (¥ —aF)AT- A
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2 4
El—El=@-;-K2’jfl( $_oaN)AT-[Q, sin 20, — 0(1 —cos 20,)]
= 2 4,
ﬁEl —-l 2kA+17 '“ ( —OC])AT [b|3 Sln292—b23(1_005202)]
@3 K2+1
C,+C, = 2k[Q, sin 20, —Q,(1 —cos 20,)]
2 4,
é;’kzﬁil( % a¥)AT" [y 4 sin 20, — bry(1 —cos 20,)]
Cl; L= jkoA+ik[b,, sin 20, — b, (1 —cos 26,)]
! 4y, % * .
—HE_D“ +1(c)cZ—ozl)AT'[b]Ssm202——b25(1——008282)]
3 Ky
A +A, =ko[0, 5in20, — 0, (1 —cos 20,)] +k[b, 4 sin 20, — b4 (1 —cos 20,)]
1 4u, % .
@3 * 7+T(a2 OC])AT' [b16 Slnzez“‘bzs(l—coszez)] (39)
where
®3 = bllb26—b21b16—b12b25 +b22b15 +b13b24_b23bl4 (40)

k and k, are two independent arbitrary real constants.
The complex constants G,, E,, C, and 4, can be derived from (34), then from (11) H; = 0 and
F,, D, B, can be achieved. Finally, from (8) the solution for ®, = ®, =0 is
A, —A4, A +A4,
?,(z) = — 5 L4 = _; Lz4+Czlnz+EzIn*z+ G zIn’z

Y,(z) = Biz+ D zlnz+ Fyzln’z (41a)

©2(2) = Ayz+ Crzlnz+ E,zInz + Gz In’z
W2(2) = Byz+DyzInz+ FyzIn’z (41b)

where 4, — A4,/2 is an arbitrary imaginary constant, the terms related to the arbitrary real constant
k or k, represent a homogeneous solution. Equation (41) is just the solution for the secondary
paradox, which can be called the secondary paradox solution.
Substituting (41) into (5) and noticing G;+ G, = 0 yields
G+ ity = [1 —e* D) {(E,+E;+3G,;+6i0,G )[In*r+2i0 Inr — 0> + 2(In r + i0)]
+(Cj+ C;+2E,— 4i0,E;+120°G) *(Inr+i0+ 1) + (4, + 4,4+ C,
—2i0},»C,-—40_,2ij— 8i6}G))} +2i(0—6)G,[3In*r+6(1 —if) Inr
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— (62 —200,+ 462 + 6i0 )] —4i(0— 0)E(Inr+1—i6)—2i(0—0)C, (j=1,2) (42)

it is observed that the singularities of In*r and Inr appear in thermal residual stresses.

However, numerical analyses demonstrate that the value of ®@; still possibly equals zero when
©, = 0and ®, = 0. For instance, if 6, = 182.7099°, 6, = —100°, x = —0.9989, f = —0.4853, then
©, = 0, =0 and ®, = 0, thereby the secondary paradox solution (41) is still infinite, this is the
triple paradox.

3.4. The triple paradox solution (When ®, = @, = 0, = 0)

From eqns (12a) and (13) we have M,+ M, = 0 and

1
M2 = rKl + M]
Ky +1
_ Ki+1 1 g2t 240 . L2i0
K+ 1 1—-T G,—G, . .
E, =T E ey 3.t Tl o2 208,
2 ot 1 1+ 7+l|:(E1—+-E)(l )—3 5 (1 —e*142i6, ")
G, +G, . .
+3 S (1= e = 2i0,€7%) + M, 2467 €]
C :FK1+1C Lo 1— [(C +C, )(1——6219') (E E)(1_62i9,+2i0 e21‘(9,)
! K2'+‘1 ! 2+1 ! ! ! 1
+(E, +ED(1—e* =28, €21 + G, + 1267 e2®1 4 M, - 32i6 2]
Ky 41 1-T — . C,—C, A .
A :r A _ 2if, L a2t . 210]
2= ]+K2+1|:(A1+A])(1 €)=y (1= 4200, )

Ci+C,
]2 1( 2 _ 2101 21()1)+E1 402 210,+Gl 8103 2:0|_Ml 1604 2101]
2u
_K2+1( —O(l)AT (43)

Introducing (43) in (12b)—(12e), then separating the real parts from the imaginary parts, we
obtain

b1 (G +G)+by, 4M,i=0 (44a)
by (G +G))+byy 4M,i =0 (44b)

— 3
by (E\+E\)+b, (G,

. 3 _
2( —Gl)l+bl3'§(G1+G])+b14'6M1i=0 (453.)
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— 3 — 3 _
by (E\+E\)+by, .E(Gl —G)i+bs; 'E(Gl +G\)+by6Mi=0 (45b)

_ — — 3 —
by (C,+Cy)+by,(E, —E)i+ by (E\+E)+b, 5(G,—G))i

5@,

3 _
+bys 'E(Gl +G ) +bs6M;i=0 (46a)
— _ . 3 -
by ((Cy+C)+ by (Ey—E )i+ by (E, +E))+ by '§(G| —Gy)i

3 _
+bss .E(GI +G)+bys"6Mi=0 (46b)

— c,-C, C,+C, E,—E,
bll'(A1+Al)+b12'_L2—’l"i+b13'_l’2_*l +by4 12 li

E,+E,

’ 3 - 3 _
+b15' 2 +b]6‘Z(G1—G|)i+b]7'Z(G1+G])+b|8'3M]i

=M e AT cos 26
—'“K2+l(0‘2‘“°‘1) (1~cos26,) (47a)

- c,—-C, C,+C, E, —E,
b21'(A,+A,)+b22'—1—2——1i+b23';2~4-+b24’ 1 l

E+E 3 3 ,
(G, —G,)i+ by, 'Z(Gl +G,)+bygr3M,i

+b25 4

2 +b26

Au,
= o (0¥ —a¥)ATsin 26, (47b)

where

K, +1 11 .
+2 - - 863 5
— . 1(1 cos20,)] 865sin 26,

b17 =

(S \S ]

{— 863 sin 20, + [F

1 5in 20, *(1 —cos 260,) — 1267 sin 20, *( —sin 20, + 20, cos 20,)
— 129% c0s 26, *(1 —cos 20, 426, sin 26,) — 12(sin 26, + 28, cos 20,)83 sin 20,

—12(1 —cos 26, +26, sin26,)63 cos 26, — 165sin 26, - 03 cos 292]}

2 K +1 1-T
by; = 5{—89? cos 20, +[FK2+1 +2K2+1(1-cos291)]'893 cos 20,
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1-T
+ ] [1663 sin 26, - sin 20, — 1267 sin 26, *(1 —cos 20, — 26, sin 20,)

K

— 1263 cos 20, “(sin 20, + 20, cos 20,) — 12(sin 20, + 26, cos 26,)83 cos 26,

+12(1—cos 28, + 20, sin 26,)63 sin 20, + 16 sin 20, - 63 sin 202]} (48a)

2 +1 1-T ,
by = 5{ 867 sin 20, +F +1 - 803 sin 20, + - [1661 sin 28, +(1 —cos 20,)

— 1667 sin 20, (—sin 20, + 20, cos 26,) — 1667 cos 260, (1 —cos 26, + 26, sin 26,)
— 486202 cos 20, - sin 20, — 480?63 sin 26, - cos 20,

+16(1 —cos 26, —20, sin 20,)03 cos 20, — 16( —sin 26, + 26, cos 28,)03 sin 292]}

2 K +1 1-T . :
bzgzg{_ 4 . x;+1. 2005292+——+T[160?sm26,'31n292

Ky
— 1667 sin 26, (1 —cos 26, — 26, sin 26,) — 160} cos 26, (sin 26, + 26, cos 20,)
— 480703 cos 20, - cos 20, + 480703 sin 20, * sin 26,

—16(1 —cos 26, —26, sin 20,)63 sin 26, — 16(—sin 260, + 20, cos 20,)63 cos 202]} (48b)

Applying the method similar to that in 3.2 to solve the set of eqns (44)-(47), and noticing
0, =0, =0,=0, we get

M, =i M2 e mATA
3@, k,+1
G';G' =3é4-é’fl( f—aH)AT- [0, sin 20, — 0, (1 —cos 26,)]
G;;Q:iékmw;(%-xj’fl( % —a¥)AT [by5 5in 20, — by, (1 —cos 20,)]
E,+E, = 2k*[Q, sin 20, — 0, (1 —cos 26,)]
2 Au,
é;';-2+1 (0f —af)AT - [by,sin 20, — b,4(1 —cos 26,)]
E, =i+ 2kA+i-2k*[bys $in 20, — by, (1 —cos 26,)]
it e AT by sin 20, — bys(1 —c0s 20 )]
Q. 12 +1
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+ (e —o AT [bysin 20, — b, (1 —cos 26,)]

T o A

+ik[b; 5 $in 20, — b5 (1 —cos 20,)] + ik*[b, 5 5sin 20, — b, 5 (1 —c0s 26,)]

1 4
rigo -—-—-»“—--—( $—aH)AT" [by; sin 20, — by (1 —c0s 20,)]
4 2

A, + A, = ky[Q, sin 20, — Q,(1 —cos 20,)]
+k[b4sin 20, — by, (1 —cos 20,)]+k*[h¢ sin 20, — by (1 —cos 20,)]

1 4y, .
oo THa (a¥—aF)AT " [bys sin 20, — b5 (1 —cos 26,)] (49)
@4 s+ |
where
O, = by, —by1byg—bisbyy +byybyr by 3bog ~ba3byg —b1ab2s+byabys (50)

k* k and k, are three independent, arbitrary real constants.
The complex constants M,, G,, E,, C, and A, can be derived from (43) then from (11) N;=0
and H, F,, D, B;can be achieved. Finally, from (8) the solution for @, = @, = O, =0 is

A, -4, A +A,
@1(2) = — 5 ]Z+"""‘*~2*—-l-'”+(,zlnz+E1:ln 2+ G zln*z+ M, zIn*z

W,(z) = Biz+ D zInz+F,zIn’z+ H,zIn’z (51a)
0:(2) = Az 4+ Cozlnz+ E,zIn’z 4+ GozInz 4+ M,z Inz
Y,(z) = Byz+Dozlnz+ FyzIn?z+ H,yzIn’z (51b)

where 4, — A,/2 is an arbitrary imaginary constant, the terms related to the arbitrary real constant
k*, k and k, represent a homogeneous solution. Equation (51) is just the solution for the triple
paradox, which can be called the triple paradox solution.
Substituting (51) into (5) and noticing M;+ M, = 0 yields
Optit,, = [1—e""P1{(G,+G,+4M,+8i0,M)[(Inr+i0)* +3(Inr+if)?*]
+(E;+ E,+3G,—6i0,G,+ 2402 M )[(In r +i6)* + 2(In r + i6))
+(C,+ C+2E,—4i0,E,— 1267G,—32i03 M) (In r+i6 + 1)
(A, + A, +C,—2i0,C,— 407 E,+8i0° G, — 160° M) }

+8i(0@ -0 )M [In’r+3(1 —if)) In*r — (8% — 200, + 407 4 6i0,) Inr
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— (0% —200,+462) +i0 (0% — 200, +207)] — 2i(0— 6,)G,[3 In*r

+6(1—i0,) Inr— (6% —260,+ 46 + 6i6,)] — 4i(6 —6,)E;(In r

+1-i0,)—2i(0-0,)C;, (j=1,2) (52)
it is observed that the singularities of In’r, In*r and Inr appear in thermal residual stresses.

Numerical analysis demonstrates that the triple paradox probably occurs only when the value

of (8,—0,) is in the range of 281.24°-284.34° or 355.55°-358.69° (for plain stress), and @,, the
denominator of the solution (51), does not vanish when ®, = @, = @, = 0, hence the paradox
does not exist for the triple paradox solution (51).

Up till now, all the cases of A # 0 have been studied and the corresponding particular solutions
presented.

4. The particular solutions when A = 0

Noticing that if two of the three terms sin 8, sin 8, and sin(6, —6,) equal zero, the third one
definitely vanishes, there exist the following different circumstances:

4.1. sin(0,—80,) = 0 and sinb, # 0, sin0, # 0

In this case §;, — 0, = nor 27, 0, # n, 0, # —n, hence 1 —e*"1 = | —e?2 % 0,

4.1.1. The classical solution
Taking C;=D,=E, = F,=G,=H,=M,=N,=0, (j=1,2). Solving eqns (12) and (13), and
from eqns(11) one obtains
7A1 +/‘Tl 1 ~2,U2

2 _A] K2+1

K1+1.A1—A_]+L. 21,
K2+1 2 Al K2+1

(af —a¥)AT

s =

1-T
(oc’z"—oc’l“)AT(l—iQ +lsm29|>

K
1 4y, ,
B = — A—l"xzil (aF—aP)AT ¢~ 20
1 4y, .
B2 =~ A—I.Kv +1 (a,{_a?‘)AT'e_hez (53)

where

K, +1 1-T
|=F
Ky+1 Ky+1

(1—cos20,)—1 zl—%[ﬂ—(ﬂ—cx)cosw]] (54)

thus from (8) we have
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Fig. 3. The region in which the point («, f) lies when A = 0.

= + z z) = A,z
¢1(2) 7 z 3 and @2(2) 2 } (55)

Y (z) = B,z Y1(z) = B,z

where A, — A,/2 is an arbitrary imaginary constant, (55} is just the classical solution.
Substituting (55) into (4) and (5) yields

e '—“(A;"*‘Z)[l"'ezim—gi)]} (j=1,2)
Gt ity = (A, +A4)[1 -] ’

(56)

Equations (55) and (56) are valid only when A # 0, on this condition the expression (56),
which is a particular solution of thermal residual stresses, does not contain Inr terms, hence the
logarithmic singularity will not appear.

When A, =0, i.e., cos28, = p/(f—u), the classical solution (55) becomes infinite, this is a
paradox, and the expression (56), the stresses in which are called thermoelastic constant stress
terms by Ioka et al. (1996), breaks down. In this case the point («, ) is in the shaded region shown
in Fig. 3 (except the straight line a = 0).

4.1.2. The primary paradox solution (when A, = 0)
Taking £, = F,;=G,=H,=M;=N;=0, (j=1,2). From (13) and using A, = 0 we get
q+a¥ ki+l €, —C, . 1-T

5 il 2 e ©@ +C,)sin20, (57a)

&)

A +A4, _xk,+1 A, -4, 1-T .
5 + ot 1 5 ——zxﬁ_l(A1+A1)sm26'1

1-T q—a_
K2+1 2

A2=

C,+C))

(1—e* 420, e**1) + (1—e?1—2i0, em')}
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2u,
_Kfilu;_anAT (57b)
2

it is easily observed that eqn (12d) is satisfied automatically.
Substituting (57) into (12¢), then separating the real parts from the imaginary parts, one obtains

C, +C1 C, *a du,

an T by S = = R @ e AT cos20,)
azl._‘_z__‘ +a22-“2~—~‘~,= —»;{2_’_1—( o —a¥)ATsin 26, (58)
where
1-T ) .
a, = —2 1 (2—2co0s20,+ 20, sin 20, — 40, sin 26, cos 20,)
K,+1
+FK2 . +2(0, —86,) sin 20,
1-T
ay; = —2- +»l~[2(91 —60,)(1 —cos20,) +40,sin*20, ]+ —8,) cos 20,
o+ 1
alz = —FKI + "2(9] —92)C08231
K2+1
1
Ay = — K (2 2cos 26, — 26, sin 26, )+F 2(01 8,) sin 20, (59)
Solving eqns (58) we have
C,+C, 1 4u .
‘2 : =A-;'Kz_i_zl(oc’z"—oc’l")AT'[alzsm292—a22(1—c05292)]
C, —ai 1 4w,
‘—’7 """" = IZ;.K2+] ( "'“])AT [a” Slnz()z—ao](l‘coszgz)] (60)

where

A, = ay a5, —ana),

+1
K+ K,+1

1-T
+4 (2 74_—?2(1 —cos 26, — 0, sin 20,)(1 —cos 260, + 0, sin 20, — 20, sin 26, cos 26,)
2

4
T2 —q)? {(1—=a®)(0, —0,)* +4a(8, —0,) sin 26,
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Fig. 4. The curve for 6§, —0, = =, on which the point (x, ) lies when A, = A, = 0.

+4[o? + (B2 —a2)0, 6, sin?20, +aB(6, +6,) sin 20,1} (61)

Thus complex constant 4, can be arbitrary, C, and A4, can be derived from (57), then from (11)
D; and B, can be achieved. Finally, from (8) the solution for A; = 0 is

(p,(z)=A,z+Clzlnz} (pz(z):Azz+szlnz}
n

62
V,(z) = Biz+Dyzlnz W(z) = Brz+ D,zInz (62)

in which the terms related to the arbitrary complex constant A, represent a homogeneous solution,
eqn (62) can be called the primary paradox solution.
Substituting (62) into (4) and (5) yields

0, =ity = [1+" % [(C;4+CHnr+if+ 1)+ 4+ 4,

+C;~2i0,C}] - 2i(0 - 0,)C;~2C, ,
. oo _ . —r U=L12 (63)
Op+it,y = [1—e* "V [(C;+ C)Inr+i0+ 1)+ 4, + 4,

+C,—2i0,C;]—2i(0—0,)C;

it 1s observed that the singularity of In r appears in thermal residual stresses when C j—l—fj #0.
However, analyses and calculations demonstrate that the value of A, still possibly equals zero
when A, = 0. For instance, if 0, = n/4, 0, =(3n)/(4), o = —(2n)/(4+=x), B = 0, then A, = 0 and
A, = 0, thereby the primary paradox solution (62) is still infinite, this is the secondary paradox.
For 8, —6, = =, the curve on which the point («, ) lies when A, = A, = 0 is shown in Fig. 4,
and the two branches of it are polar symmetric about the origin O.

4.1.3. The secondary paradox solution (when A, = A, = 0)
Taking G; = H;= M; = N;= 0, (j = 1,2). From (13) and making use of A, = 0 we get
_E+E | _k+l E—E  1-T

E, = r —
: t K41 2 Yo+

(E, +E, sin20,
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C,+C, _x+1 C—C, ,1 r
= r ° — 2
C, 5 + P 3 2+1(C,+C)sm 0,
1-T — 2 2 = 2i0 ) 200
+ o[ (E - ED (e 4210, %) + (B + Ey) (1 —e™ =210, e*7)]
2
A, +A4, _Kk,+1 4,—4, ,1 r 1-r{ ¢, -¢
A, = r . — A,+A4;)sin2 ~
2=y A Ty i b ) sin 26, 4 e 2

. . C,+C, A
-(l—ez’”1+2i€1e2’”')+——-12 L(1—e¥ —2i0, ¥+ E, - H%ez"’ljl

2u,
- - anAT (64)

it is easily observed that eqn (12c) is satisfied automatically.
Substituting (64) into (12d) and (12e), then separating the real parts from the imaginary parts,

one obtains
ay, (E\+E)+a,(E,—E)i=0
a) (E\+E))+ay,(E,—E)i=0
ay, (Cy+C)24 a1, (Cy = C)if2+ar; (B + E)) + a4 (E,

(65)
—E))i
_ M AT( —cos20,) (66)
K,+1
a3 *(C+C1)/2+ax *(C,

-a)i/z'*‘aza (E) +E)+az4 (E —Fl)i

4
= — 2 (¥ a})ATsin26,

Ko+ 1
where
1
a;; = — x, T [1 —€08 26, + (6, +0,) sin 20, —20,sin 26, cos 26, + 263 cos 20,
K, +1
—26,(6, +6,) cos 48, ]+F 2(92 63) cos 20,
1— )
adyy = _27‘f[ (01 )COS 20] (1 —COS 291)+(01 +62) sin 291 +2(9]2 —03)
. . K, +1 .
+sin26, +40,(0, +6,) sin 20, cos 201]—1“’C 2(92 63%) sin 20,
2
—T
014 = 2 [(9] -02) 005201 '(1 ‘COS 26])-‘(8] +92) Sln220]

K2+1
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+40,0, sin 26, 2 — 02 sin 20,

l I
2+1

[— (1—cos20,)+ (8, +0,)sin 20, —28, sin 20, cos 26,

Ary =

K|+1

+26,0, cos 40, — 207 (1 —cos 26 )]+F -2(61 —03) cos 20, 67)

Applying the method similar to that in 3.2 to solve the set of equations (65)—(66), and noticing
that when A, = A, = 0, the coefficients a;, and a;, do not vanish simultaneously, we get

— 1 4y .

E+E =E°;2+1 (a¥ —a¥)AT [a,, sin 20, —a,,(1 —cos 26,)]
E,_E =i AT-[ay, sin 20, — ay, (1 —cos 20,)]

1 1 A3 K2+1 1 11 27 Uy 2
C,+C, 1 4u .

12 L k0a12+E-K2+21 (0 —a¥)AT" [a, 4 sin 20, —a,4(1 —cos 20,)]
Cl—Cv . 1 A,

2 lkoall +IZ:'K2+1 ( —OC‘)AT [013 Sll’1292—a23(1 _COSZB )] (68)

where

Ay = 05,813 —0128,3— 03114+ 011054

1-T (. 1- )
_2-’-<—2?{ 2_H[4(1—cos20) —2(1—cos20,)sin26, (6, —0,+26, cos26,)

—4(1 —cos26,) cos 20, «(67 — 65 + 265 cos 20,) —40,6,(8, +6,) sin 20, cos 26,

“(1—2co0s20,)]-T—

2

+1
] +2(0,—6,)2(1 —cos26,)[2(8, +0,) cos 26, +sin20,]}

2ap
p—

{20(2 +a[p(0, +6,)+(0, —0,)]sin 20, + —— [ﬁ(G2 +63)

8
(-’
+(9?—9§)]+25(ﬁ+d)9192(91+92)Sin291} (69)
7, 1S an arbitrary real constant.

The complex constant 4, can be arbitrary, E,, C, and A4, can be derived from (64), then from
(11) F,, D; and B, can be achieved. Finally, from (8) the solution for A, = A, = 0 is

¢,(z)=A,z4+C,zlnz+E,zIn*z 0,(z) = A,z+ Cyzlnz+ E,zIn’z
and (70)

W,(z) = Byz+D,zlnz+F,zInz W,(z) = Byz+DyzInz+ FyzIn’z
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in which the terms related to the arbitrary complex constant 4, or the arbitrary real constant &,
represent a homogeneous solution. Equation (70) can be called the secondary paradox solution.
Substituting (70) into (4) and (5) yields

O — ity = [14+€* 0] {(E,+E)) [In’r+2i0Inr— 6 + 2(In r +i6)]
+(C,+C,+2E,—40,E) -(Inr+i0+1)+(4,+A4,+C,
—2i0,C,—402E,)} —4i(0—0,)E (Inr+1—i0,) —2i(0 —6,)C,
—4E,(Inr4+i0+1)—2C,

T+ ity = [1—e2 91 {(E, 4+ E) [In’r+2i0Inr—0°+2(Inr+i6)]
+(C4C,+2E,—4i0,E) - Inr+i0+1)+(A4,+ A4,+C,
—2i0,C,—407E)} —4i(0—0)E(Inr+1-i0) —2i(6—-0)C, (=12  (71)

it is observed that the singularity of In’r appears in thermal residual stresses when E,+Fj # 0.

Numerical computations demonstrate that the value of A;, the denominator of the solution (70),
does not vanish when A, = A, = 0, thereby the paradox does not exist for the secondary paradox
solution (70).

4.2. 5in6, #£0,5in0, =10

In this case 0, # 7, 6, = —n. Taking C;=D,=E,=F,=G,=H,=M,=N,=0, (j=1,2),
solving eqns (12) and (13), and from eqns (1 1) one obtams

K +1 2u
A +A4, =0, A, =T ;+1 | — 2+21( ¥ a¥)AT
B, =0, B,= b (aF—a)AT (72)
- K2+1 -
thus from (8) the solution is

p1(2) = A,z ®,(2) =
and (73)

Yi(z) =0 W,(2) =B2z

where A, is an arbitrary imaginary constant.
It is evident that the thermal residual stresses corresponding to the particular solution (73)
vanish in material 1 and on the interface.

4.3, sin8, =0, sinf, #0
In this case 8, = n, 0, # —n. Taking C;=D,=E,=F,=G,=H =M,=N,=0, (j=1,2),
solving eqns (12) and (13), and from eqns (11) one obtains A

é]‘j'giz KQ_:{'I .__2/12 ( )AT A FK1+1 A] 2_1
2 Tk, +1) x,+1 2Tkl 2
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K:Q + 1 . 4”2
Tk, +1) Kk,+1
thus from (8) the solution is

A—A, A+4,
= —Z4 z z) = A,z
¢ (2) D) 3 and ©2(2) 2 }

¥, (2) = Bz Ya(2) =0

where 4, — A,/2 is an arbitrary imaginary constant.

It is evident that the thermal residual stresses corresponding to the particular solution (75)
vanish in material 2 and on the interface. Actually, if we exchange the signs 1 and 2 of the two
dissimilar materials and reverse the rotation direction of 8, the situation of 4.3. is consistent with
that of 4.2.

B1=

(¥ —aPAT, B, =0 (74)

(75)

44. sinB, = 0and sint, =0

In this case 6, =n, 0, = —n, hence the model becomes the interfacial crack. Taking
C=D,=E=F=G=H=M=N,=0,(j=1,2), solving eqns (12) and (13), and from eqns
( 1 1) one obtams

K +1 21,

=T A T B eDAT
B = —(4,+4,), B,=—|T ‘+1A+) Yo (g—anAT 76
p = —(4, 1) 2 = K+ ( ot 1 o) (76)
thus from (8) the solution is
z)=A,z :A,,
®1(2) 14} and @5(2) _z} -
¥,(z) = B,z] W,(z) = B,z

where A, is an arbitrary complex constant, its related terms represent a homogeneous solution.
Substituting (77) into (5) yields

a-j() +iT/'l'l) = (A]+;I_/)(1 __62f(7) (] = 13 2 (78)

It is observed that the thermal residual stresses corresponding to the particular solution (77) vanish
on the interface.

Up till now, all the cases of A = 0 have been studied and the corresponding particular solutions
presented.

5. Conclusion

In this paper, all the cases of the thermal residual stress field near the apex in dissimilar materials
bonded with two arbitrary angles are researched theoretically, and the corresponding particular
solutions provided. The main results are as follows:
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(1) Thermal residual stresses are proportional to the temperature difference AT and the differ-
ence of the thermal expansion coefficients (x,—a,) for plane stress or [(1+v,)a,—(1+v))e,] for
plane strain. Moreover, thermal residual stresses are dependent on the geometry angles 6,, ¢, and
the Dundurs parameters a, f, and u,/(x,+ 1) or x,/(x,+1). Especially, when 6,, 8, and «, § satisfy
the definite relations, logarithmic singularities develop.

(2) For the case of sin 6, - sin 6, - sin(6, —6,) # 0, when ®, = 0, i.e., the expression (21) vanishes,
the singularity of In r appears in thermal residual stresses; when @, = ©, = 0, i.e., the expressions
(21) and (28) vanish simultaneously, the singularities of In* and In r appear; furthermore, when
0, =0, =0, =0,ie., the expressions (21), (28) and (40) vanish simultaneously, the singularities
of In'r, In’r and Inr appear.

(3) For the case of sinf, - sin 6, - sin(f, — 6,) = 0, logarithmic singularities also probably develop
in thermal residual stresses. Under the circumstances of 0, —0, = = or 2%, and 0, # &, 6, # —m,
when A, = 0, i.e., the expression (54) vanishes, the singularity of Inr appears; moreover, when
A, = A, = 0, i.e., the expressions (54) and (61) vanish simultaneously, the singularities of In* and
Inr appear. Especially, it should be pointed out that if

1
[25%) Slnzgl—azz(l_coszgl) =O IC, tan 0] =61__2-+:Ta(9]—02)

then the terms with the highest order of the power of Inr, i.e., the terms of (Inr)' for A, =0, A, # 0
and the terms of (Inr)? for A; = A, = 0, will vanish from the expressions of stresses, and the highest
orders of the power of In r then become (Inr)’ and (Inr)', respectively.

(4) The logarithmic singularities of thermal residual stresses at the apex in bonded dissimilar
materials have intimate relations with paradox problems. It is shown that by constructing the
particular solution sequences in the form of complex functions about (Inz)” (n = 1,2,...), and
taking many enough terms in the sequences to make linear combinations for all the complex
potentials, we can solve multiple paradox problems succinctly and effectively, the resolution of the
problem here is just an outstanding example for the applications of the above method.
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