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Abstract

By employing the complex variable method and constructing the particular solution sequences in the form
of complex functions, all the cases of the thermal residual stress field near the apex in dissimilar materials
bonded with two arbitrary angles are researched theoretically, and the corresponding classical solutions are
obtained. Moreover, the primary paradox, the secondary paradox and even the triple paradox are discovered
in the classical solutions and also resolved here, thereby it is confirmed that thermal residual stresses near
the apex in bonded dissimilar materials probably possess the singularities of Inr (when the primary paradox
occurs), In2r (when the secondary paradox occurs) and even In'r (when the triple paradox occurs). In
addition, the systematic method to solve multiple paradox problems is put forward. 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

For the structures jointed with different isotropic homogeneous elastic materials, thermal
residual stresses develop during the cooling-down process in manufacture due to the difference in
thermal expansion coefficients of these materials, These stresses may lower the strength of bonded
jissimilar materials, and sometimes give rise to damage in them, it is therefore necessary to
nvestigate theoretically the distribution and the singularities of thermal residual stresses near the

,lpex in bonded dissimilar materials. Mizuno et al. (1988) and Suga et al. (1989) studied thermal
:;tresses in two dissimilar materials jointed together with right angles (90''190°), and came to the
conclusion that the order of singularity developing under thermal stress loading is the same as that
under mechanical loading. However, by applying the boundary element method and analyzing
numerical results, Yuuki and Xu (1992) and Yuuki et al. (1991) found that logarithmic singularities
may develop at the apex under thermal stress loading. The preliminary theoretical research on
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thermal residual stresses near the apex in bonded dissimilar materials made by Xu and Mutoh
(1996) confirmed the above discovery, but they did not make further investigations so as to clarify
the whole situation of the problem. In addition, for two dissimilar materials jointed together with
right angles or with two arbitrary angles 8\(>0) and 82 ( <0), Munz and Yang (1992) and Munz
et al. (1993) discovered that the thermoelastic constant stress terms (JijO (i.e., the classical solutions
of thermal stresses) approach infinity for a combination of the elastic constants leading to a stress
singularity exponent w = 0, this is a paradox. For the special case of a free straight surface, i.e.,
81-82 = 180°, Ioka et al. (1996) also discovered that the paradox exists for the thermoelastic
constant stress terms (JijO, they pointed out that logarithmic free edge stress singularity appears for
thermal residual stresses when the paradox occurs, and demonstrated numerically the conclusion
by using the boundary element method.

In this study, we employ the complex variable method, by constructing the particular solution
sequences in the form of complex functions (Ding et al., 1998), all the cases of the thermal residual
stress field near the apex in dissimilar materials bonded with two arbitrary angles are researched
theoretically, and the corresponding classical solutions are presented. Moreover, the primary
paradox, the secondary paradox and even the triple paradox are discovered in the classical
solutions, the solutions for the paradox are also obtained here, from which it is confirmed
that thermal residual stresses near the apex in bonded dissimilar materials probably possess the
singularities of lnr (when the primary paradox occurs), In2r (when the secondary paradox occurs)
and even In3r (when the triple paradox occurs). The discovery of the triple paradox is for the first
time, and the systematic method to solve multiple paradox problems is also put forward in the
paper.

2. Model of the problem and basic equations

The model of dissimilar materials jointed with two arbitrary angles 8, and 82 is shown in Fig. I,
then the boundary conditions are

At 8 = 8/ (J)0(r,8) = 0, T;rO(r, OJ = 0 (j = 1,2) (1)

where the subscript j stands for the two materials. Supposing that the structure is cooled down

Interface

Fig. 1. Dissimilar materials jointed with two arbitrary angles (JI and (J2'



Ding Haojiang, Peng Nanling / International Journal of Solids and Structures 36 (1999) 5611-5637 5613

from a stress-free state, the resulting temperature difference is tJ.T, which is defined as negative for
cooling conditions, the thermal expansion coefficient for material j is rxij = 1,2), thus the con
tinuous conditions for the stresses and displacements at the interface are given by

at 8 = 0: a18(r,O) = a20(r,0), !lrO(r,O) = !2rO(r,0)

u1r(r,O) = u2r(r,O)+(rx!-rxf)tJ.T·r, ulO(r,O) = u20(r,0)

(2a)

(2b)

where

(3){( 1+v )rx for plane strain* J .Irxj =
rxj for plane stress

v/j = 1,2) being the Poisson's ratio ofmaterialj, ujr(r, 8) and ujo(r, 8) are the displacements caused
by thermal residual stresses (Tjr(r, 8), ajo(r, 8) and !jrO(r, 8).

Following the complex function theory of Muskhe1ishvili (1953), we can write the displacements
and stresses for each material, in term of two complex potentials (f)/z) and t/J/z) (j = 1,2) as

ajr - irjrO = (f);(z) + (f);(Z) - e2iO [Z(f)J(z) + t/J;(z)] (4)

ajo+irjrO = (f)j(z) + (f)j(z) +e2iO [z(f)"'+t/Jj(z)] (5)

2J1iUjr+iujO) = e-iO[Kj(f)/Z)-Z(f)j(z)-t/J/z)] (6)

where

(7)

for plane strain

for plane stress
1

3 -4Vj

Kj = 3 -Vj

1+Vi

J1/j = 1,2) being the shear modulus of materialj, (f)/z) and t/J/z) are the complex conjugates of
o/lz) and t/tlz) (where Z = reiO), respectively.

We assume

(8)

where Ai' Bj , ... , M j and Nj are complex constants.
Substituting (8) into (5) and (6), one obtains

ajO + irjrO =(Mj+Mj+e2iON)ln4r

+ [Gi +Gi +8Mj+4Mj+4i8(Mj - Mj+e2iONJ +e2iO (Hj+4Nj)] In3r

+ {Ei+Ei+6Gi+3Gj+ 12Mi+3i8[Gj-Gj+8Mj-4Mj+e2iO(Hj+4NJ]

- 682 (Mj+Mj+e2iONj)+e2iO (Fi+3H)} In2r+ {Cj+Cj+4Ej+2Ej+6Gj

+ 2i8[Ei- Ei+ 6Gj- 3Gj+ 12Mi+e2iO (Fj+3H)] - 382 [Gj+Gj+8Mj+4Mj

+ e2iO (Hi +4N)] -4i83 (Mj- M j+e2iON j)+e2iO (D j+2FJ} In r+ Ai+Aj+2Cj
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- - - 2·0 0-

+ Cj+2Ej+iO[Cj-Cj+4Ej-2Ej+6Gj+e ' (Dj+2Fj)] -O~[Ej+Ej+6Gj

+ 3Gj + 12Mj+ e2iO (Fj. + 3HJ] - i(}3 [Gj- Gj+ 8Mj-4Mj+ e2iO (Hj+4Nj)]

+(}4(M+ M+e 2iON)+e2iO(B+D) (9)1.1 .1 .1.1

2j.lj(Ujr + iUjo) = (KjMj- M j_e- 2iONJr In4 r

+ [KG.-G-4M ·-e -2iIJH+4iO(KM+M+e-2i8K)]rln3 r
1.1 .1.1 .1 .1.1.1 .1

+ [KjEj- E;- 3Gj_e- 2iOF j+ 3i(}(KPj+ Gj+4Mj+e-2iOH) -6(}2(Kj M j -Mj

_e- 2ilJ N)]rln 2r+ [KC - C-2E-e- 2iOD+2W(KE+E+ 3G+e- 2i1lp)
.1 .1.1, i .1 .1.1 i.1 i

-3f]2(KPI-Gj-4Mj-e-2i1JH;) _4j(}3(KjMj+M.1+e-2iIJNj)]r In r+ [KjA,

- A j - C j _e- 2ilJ B j +iO(KjCj +Cj+2Ej +e- 2iIJDj) -()2(Kj Ej-Ej- 3Gj

_e- 2iOF.) -i03(KG.+ G.+4XT+e- 2iIJ}j-) + 04(KM.- JI,[_e- 2iO N·)]r
I 1.1.1· .1 .I .1.1.1 .1

(10)

The applications of the boundary conditions (1) and the interface conditions (2a), (2b) to (9)
and (10) yield

(11)(j=1,2)

N = -(M+M)e- 2i1lj
Ii'

H j = -(Gj+Gj+4Mj-8iOjM)e--2ilJ/

p = -(E.+E.+3G.-6iOG.-2402M.)e-2iBj
I .1.1.1 .1.1 .1 i

D.· = -(C+ C-+2E-4iOE-1202G+32if)3 M) e- 2ill,, J.I J .Ii J J .1.1

Bj = - (Aj+ A j+ CI-2i8 j Cj -48JE j + 8i01Gj+ 1601M) e- 2iBj

(MI + At] )(1_e2iOI ) = (M2+ M2)(I-e2iIl2) (12a)

(G] +~+4Md(1-e2iB' )-8i8, e2iBIMI =(G2+G2+4M2)(I-e2io2)-8i82 e2i112 M 2 (12b)

(EI +E~ +3~)(I-e2iOl)-(6iOIGI -248fMde2iO,

= (E2+ E2+ 3G2)(1- e2i(2 ) - (6i(}2 G2- 248~M2) e2i02 (12c)

(C, + CI + 2EI)(1_e2iB,
) - (4i8 j E, -128fGI - 32iOf M,) e2iOI

= (C2+C2+2£2)(1- e2,o2) - (4i()2E2 -12(}~G2 - 32i(}iM2) e2i02 (l2d)

(AI + "A; +G)(1-e2iO')-(2i(},CI-4(}fEI-8i8fG, +16(}~MI)e2il),

= (A 2+ A2+ C2)(1 - e2i1l2 ) - (2i82C2 - 483E2- 8i8iG2+ 168iM2) e2ill2 (12e)

KI+l 1-1--
Mo = r--M + --(M +M (l_e2io, )

~ K2 + 1 I K2 + 1 I 1
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K 1+ 1 1- r ~ --- 0iO. 2 2 ill
E2 = r--E] + --[(EI +E\ +3Gd(1-e- 1)-(6t8]G] -248IM I)e I]

K 2 + I K2 + 1

KI + I I-r - ~ 2'11
C2 = r-~I C] + -~I [(C) +C] 2E])(1-e I I)

K2 + K2 +
-(4i8 IE , -120;G) -32i8fM)e2iIl1

]

K] + 1 I - r - -- 2 'II 2
A 2 = r---~A] + ---[(A I +A) +CI)(I-e' 1)-(2i8ICI -481E]

K2 + 1 K2 + 1

-8i0 3G + 1604 M ) e2i1i1 ] _ -'!£2 - (IX*-IX*)!J.T
] I I I K2 + I 2 )

(13)

where r = /12//1). Equations (11) are derived from the traction-free conditions (1); equations (12)
from (2a), the stress continuous conditions on the interface 0 = 0, and with the applications of
(11); equations (13) from (2b), the displacement continuous conditions on the interface 8 = 0, and
with the applications of (11) and (12).

The procedure to solve the above basic equations is: getting first the constants M j , Gj , E j , C j and
A j one by one from equations (12) and (13), then from eqns (II) the constants N j , H j , Fj, D; and
B; can be obtained.

Noticing that eqn (l2a) is actually a set of linear homogeneous equations about two real
constants M) + M~ and M 2 + x:i;, the coefficient determinant of which is

(14)

when!J. -# 0, M) + M] = °and M 2 + M 2 = 0, while when !J. = 0, non-trivial solutions may exist for
M) + M I and M 2 + M 2, hence we make discussions separately for the case of !J. -# °and of !J. = °
below.

3. The particular solutions when A#-O

3.J. The classical solution

In this case we can take E j = F; = G; = H j = M j = N; = 0, (j = 1,2). Solving eqns (12) and (13),
md from eqns (11) one obtains

I 4/10
C j = i--' ,-~- (lXj-IXf)!J.T·!J.

e) K2 + 1

A] +Al 1 2/12
--~----- = -··----(IX*-IX*)!J.T· [Q sin28 -Q (I-cos28 )]2 e I K 2 + 1 2 I I 2 2 2
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I 4,u2 K] + I
C2 = i-o--(a!-anL\Tor--L\

8] K2+1 K2+ 1

Kl + 1 Al -~ I 2/12 .
A 2 = r-- o + -o--(a!-anL\l1Q] sm281-Q2(I-cos28 j )]

K2 + 1 2 8 1 K2 + 1

1 4,u2 1- r . .
-i-o--(a!-anL\To--1 {[Ql sm282-Q2(I-cos282)] sm28]

8] K2+1 K2+

+ L\(I- cos 28] - 28] sin 28d}

D 1 = D 2 = 0

I 4,u2 {' .} 2 BB 1 = - _0_-
1

(a!-af)L\T [Ql sm282-Q2(I-cos282)]+(1-281)L\ e- 'I

8 J K2+

1 4,u2
B2 = - 0 0 --1 (a!-anL\T

~l K2+

{

. . KI +I} ,
o [Q]sm281-Q2(I-cos281)]+(1-282)r K2+

1
L\ e- 2,e2

where

Ql = r K
] +1(-sin282+282cos282)-(-sin281+28] cos28d

K2 + 1

Q2 = r Kl + 1(I-cos 282-282sin 28J - (I-cos 281- 28 J sin 28 j )

K2 + 1

(I 5)

(16)

then from (8) we have

Al-~ Al+~ I<PI (z) = -2-z + 2 z+CJzlnz

l/Il (z) = BIz

(I 8)

where AI-AI /2 is an arbitrary imaginary constant, its related terms represent a rigid body
rotation. Equation (18) is just the classical solution.

Substituting (I8) into (4), (5) and noticing Cj +Cj = 0 yields

(Jir - hjre = (l +e
2i

(e-e,J] [Aj + Ai + ,(I + 2i8j)C,J + 2i(8- 8)Cj - 2Cj} (j = 1,2) (19)

(Jje+hjre = [I_e 21(e-O j J] [Aj+A;+(l +2i8;)CJ+2i(8-8)Cj
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Equations (18) and (19) are valid only when 0 1 =I- 0, on this condition the expression (19), which
is a particular solution of thermal residual stresses, does not contain lnr terms, namely, the
logarithmic singularity will not appear.

Introducing the Dundurs' parameters (Dundurs, 1969)

r(K\+1)-(K2+ 1) r(K\-1)-(K2- 1) (20a)
a=r(K\+1)+(K2+1)' f3=r(K\+1)+(K2+ 1)

hence

K\+l l+a I-r f3-ar-=- (20b)
K2+I I-a' K2+I I-a

we can rewrite eqn (17), the expression of 0J, as

0\ = - 2 {(1+a)2(1-cos282-82sin282)+(1-a)2(l-cos28\-8[ sin28d
(1-a)2

- (1 + a)(1 -a)· [I-cos 28] -cos 282+cos 2(8] - ( 2) + (8[ - ( 2) sin 2(8 1 - ( 2)

-8\ sin28\ -82sin 282]+2(f3-a)[(1 +a)(l-cos282-82sin2(2)(l-cos 28d

-(1-a)(I-cos28\ -8[ sin28\)(l-cos82)]} (21)

Analyses and calculations demonstrate that when (81 - ( 2) > 45° (for plain strain) the value of
8\ is zero for some special combinations of the geometry angles 8J, 82 and the Dundurs' parameters
=<, f3. Actually, by setting 0[ = 0, we get

f3 = a - {(1 + a)2 (I-cos 282- 82sin 2(2) + (1-a)2(l-cos 28 1 - 8\ sin 28\)

-(l-a2)[1-cos28[ -cos282+cos2(8 1 -(2)+(8\ -(2) sin 2(8 1 -(2)

- 81 sin 28\ - 82sin 282]} /{2[(l + a)(1- cos 282- 82sin 2(2)(1- cos 28])

- (I-a)(I-cos 28 1 - 8[ sin 28\ )(l-cos 2(2)]} (22)

Based on (22), some curves on which 0[ equals zero are shown in Fig. 2.

. • : ; (........ 0 0

·····i· ..... ········j·····f1401lAo··ltr· (135 ,-90 )
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Fig. 2. Some combinations of the geometry angles and the Dundurs' parameters for 0 1 = O.
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When 0, = 0, the classical solution (18) becomes infinite, this is a paradox, and the expression
(19), the stresses in which are called the regular stress terms by Munz et al. (1993), breaks down.

3.2. The primary paradox solution (when 0 1 = 0)

Taking G; = H; = M; = N; = 0, (j = 1,2). From eqns (12c) and (13) we have Ej+~ = 0 and

K, +1
E = r---~E

2 K2 + 1 '

C2 = r~:: ~ C, + ~2~- [(C] + C])(1-e2101 ) -2EI(I-e2i01 +2i(}, e2i(1 )]

A 2 =r:~:; A I + L~~[(AI+~)(1-e2iOl)- C';C;-(I_e2iOl+2i(}le2iOl)

+ C] +C, (l-e2if11-2W e2i1!I)+4(}2 e2i01 E J- ~(a*-a~)I1T
2 I" K2 + 1 2 ~

(23)

Substituting (23) into (12d) and (12e), then separating the real parts from the imaginary parts,
we obtain

hI' ·(C I +CI)+b I2 ·2E,i = 0

b21 ·(C, +CI)+b22 ·2E,i = 0

- Cj-C]. C,+C, .
b ll ·(A I +A,)+b12 · 2 l+b I3 · 2 +b'4· E Il

(24a)

(24b)

4J12
= - --I(a!-af)I1T(1-cos2(}2) (2Sa)

K2+

- C,-CI . CI-CI .
h21 ·(A,+A I)+b22 • 2 l+b23·~-2~+b24·EIl

where
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l-r
+2---- (-sin2fJ] +2fJ] cos 28])(1-cos 2(2)

K2 + I

b22 = r
KI ~~(I-CoS282-282sin2(2)-(1-cos28 r -2fJ] sin28d
K2 + I

- 2~-=~ [I - cos 2fJ I + 2fJ I sin 2fJ I ) sin 2fJ2- sin 2fJ] (1- cos 282- 2fJ2sin 2fJ2)]
K 2 + I

2 • K] + 1 fJ2' fJ 1- r 2' fJb14 = 4fJ] sm 2fJ I -r~~1 . 4 2 sm2 2 -2~~1 [4fJ] sm2 1(l-cos2fJJ
K2 + K2 +

+ (l - cos 28 I - 2fJ I sin 281)( - sin 282+ 282cos 2fJ 2 )

- ( - sin 2fJ I + 28 1cos 2fJ I )(1 - cos 2fJ2 + 2fJ2 sin 2(2)]

, K]+12 l-r , ..
b24 = 481cos 28] -r~~1 '482cos 282-2~~-1 [4fJj sm2fJ] sm 2fJ2

K2 + K2 +
+(l-cos28 1 -2fJ I sin2( 1)(I-cos282 -2fJ2sin2fJ2)

- ( - sin 20 1 + 28 1 cos 2fJ I )(sin 2fJ2+ 2fJ2cos 2fJ2 )] (26)

end the following relations exist: b11 ' b22 - b21 • b12 = 8" bl ] sin 2fJ2 - b21 (1- cos 2fJ2) =,1. and
t 12 sin 2fJ2-b22(1- cos 2(2) = QI sin 2fJ2- Q2(l) - cos 2fJ2).

Noticing 8 1 = b]lb22 - b2lb12 = 0 and making use of eqns (24), the constant E, can be obtained
t1rough subtracting (25b) multiplied by bll from (25a) multiplied by b2" and the constant C] + CI /2
tlrough subtracting (25b) multiplied by bl2 from (25a) multiplied by b22, the results are

I 4,112
E = i--·--~-(C(~-C(*),1.T·,1.

I 8
2

K
2
+ I . 1

CI +CI 1 4,112 .--2--- = 8
2
'~2 + 1(o:!-o:t),1.T· [QI sm2fJ2-Q2(l-cos2fJ2)] (27)

where
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(28)

(29a)

(29b)

Subtracting (29b) multiplied by (1- cos 282) from (29a) multiplied by sin 282, one obtains

{
-I 4,u2 . }8 ° (A[ +A]) - QO--l (cxj-o:f)8To [b]4 sm282-b24 (1-COS 282)]

62 K2+

(30)

Because 8[ = bllb22-b2Ib[2 = 0, only one is independent among the three equations (29a), (29b)
and (30). Furthermore, noticing 8 =1= 0, hence eqn (30) is independent of the other two, from it
one obtains

C] -C] 1 4,u2
--2-- = iko8+iQ o--

1
(cx!-cxf)8To [bJ3 sin 282-b23 (I-cos282)]

62 K2+

A] +~ = ko[Q[ sin 282-Q2(1-cos282)]

1 4,u2 * * '+ QO--l (CX 2-cx])8To [b[4 sm282-b24 (1-cos282)]
62 K2+

(31)

(32a)

where ko is an arbitrary real cOIlStant.
The complex constants E2, C2and A2 can be derived from (23), then from (11) Fj = °and Dj , Bj

can be achieved. Finally, from (8) the solution for 8 1 = °is

Al -A] A] +A[ 2
cp](z) = --2-- z + 2 z+C[zlnz+E]zln z

t/J](z) = B]z+D[zlnz

CP2(Z) = A 2z+C2zlnz+E2zln2z

t/J2(Z) = B2z+D2zlnz (32b)
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v"here A]-Ad2 is an arbitrary imaginary constant, and the terms related to the arbitrary real
constant ko represent a homogeneous solution. Equation (32) is just the solution for the paradox,
which can be called the primary paradox solution.

Substituting (32) into (5) and noticing E j +Ej = 0 yields

(Jjo+ h jr(! = [l_eZi(O-Oi)]' {[(Cj+ C j ) +2(l +2i8)Ej ] • (In r+ i8+ 1) + Aj+ A j + C j

-2i8.C+48ZE}+4i(8-8)E(Inr+l-i8)-2i(8-8)C (j= 1,2) (33)1111 11 1 11

•t is observed that the singularity of In r appears in thermal residual stresses.
However, analyses and computations demonstrate that the value of 8 2 still possibly equals zero

\vhen 8 1 = 0, and this may occur for (81-82) > 101.240
• For instance, if 8, = 105 0

, 82 = -900
,

(~ = 0.8734, f3 = 0.4314, then 8] = 0 and 8 z = 0, thereby the primary paradox solution (32) is still
•nfinite, this is the secondary paradox.

.1.3. The secondary paradox solution (when 8\ = 8 z = 0)

Taking M j = Nj = 0, (j = 1,2). From equations (l2b) and (13) we have Gj +Gj = 0 and

K] + 1
G = ['----G

2 K2 + 1 ]

Kl+ l 1-[' ~ z·o 2·0 z·(!Eo = [,~-E +--[(E +E )(l-e I ')-3G (l-e I '+l+2i8 e I I)]
~ K2 +1 ] K2 + 1 ] 1 1 1

Kl+1 1-[' ~ ~
C = [,--C +--[(C +C)(I-e2iO' )_(E -E)(1-e2io'+2i8e2iO,)

2 K2 + 1 ] K2 + 1 " " ,

+ C] ; C] (l_eZiOI -2i8
1

eZiOI) + E, . 48~ eZiOI + G] . 8i8i eZiOI ]

2fJ-2
- --1 (cxi-cxnL\T

K2 + (34)

Substituting (34) into (l2c), (l2d) and (l2e), then separating the real parts from the imaginary
parts, we obtain

bn.·(EI+EI)+b lz ' 3G]i = 0

b2]'(E] +E])+b22 '3G]i = 0

b l ! '(C I + CI ) +b lz '(E l - E] )i+b 13 '(E, + E,) +b 14 • 3G] i = 0

b21 '(C I +C]) +b22 '(E] - E] )i+b23 '(E I+E]) +bZ4 • 3G] i = 0

(35a)

(35b)

(36a)

(36b)
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- C] - C] . C] + C] E, - E, .
b, ,'(A , +A,)+b 12 ' 2 1+b].1'--2--+ b'4' 2 1

E] +E, 3 4,112
+b 15 ,--- +b 16 ' G,i = - --1(~!-~nLlT(1-cos2(}2) (37a)

2 2 /(2 +
- C]-Cj . Cj+Cj E]-E].

b2, '(A, +Ad+b22 '--T- 1+ b2.1 '--2-- +b24 '-2-- 1

E, +£] 3 4,112 .
+b25 '--2-- +b26 '2 G,i = - /(2 + 1(~i-~f)LlTsm2(}2 (37b)

where

, [4(}f cos2(), (I-cos 2(}2) - (sin 2(), +20, cos 20,)( -sin 202+202 cos 202)

+(I-cos201+20] sin20,)(I-cos202+202sin2(}2)+40~ sin20, sin 202]

o . J. [/(' + 1 1-r J I-rh25 = -40jsm20, +40;;sm202 r-.-I +2--I(I-cos20]) -2----
1/(2 + /(2 + /(2 +

, [40f cos 20] sin 202 - (sin 20] + 20] cos 20] )(I- cos 202- 202sin 2(2)

+ (I- cos 20] + 20, sin 20, )( sin 202+ 202cos 2(2) + 40~ sin 2(}1 cos 202]

2{ .1 /(1+ 1 .1 l-r.1
b'6 = '1 SOi cos20 j - r --.-1 'S02 cos 202 - ---1 [16{J] cos20, (I-cos 2(}2)

.J /(2+ /(2+

-120f cos 20, ( - sin 202+ 202cos 2°2) + 120f sin 201(I-cos 202+ 202sin 202)

-12(I-cos 20 1 -2(}1 sin20l)O~ sin 202-12( -sin 20, +2(}1 cos 20, )O~ cos 202]}

2 { 3' K, + I 3' 1- r 3 .h26 = 3- -SO, sm2(}1 +r--
I

'802sm202- ---[160, cos20, sm202
/(2 + K2 + I

(3Sa)

- 120f cos 2(), (1 - cos 2(}2 - 202 sin 2(}2) + 120f sin 201(sin 202+ 202cos 2(}2)

-12(1 -cos2(}, -201sin 2(}, )O~ cos 202 + 12( - sin 20 1 +2(}1 cos20 1)O~ sin 202]} (3Sb)

Applying the method similar to that in 3.2 to solve the set of eqns (35)-(37), and noticing
0 1 = O2 = 0, we get

. 2 4,112 *
G I = 13e~-'~2+1 (~2-C(f)LlT'Ll
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- 2 ~z .
E I -E[ = -'--(c4-rxi)t"T' [QI sm20z -Qz(l-cos20z)]

8 3 Kz + 1

-- 2 4,uz .
E 1 -EI = i' 2kt"+i-'---(r4-rx'l')t,,T' [b 13 sm20z -bZ 3 (l-cos20J]

8 3 Kz + 1

C I +C I = 2k[QI sin20z-Qz(l-cos20z)]

+ -~_ ...4,uz (rx! - rx'l')t"T' [b 14 sin 20z - bZ4 (l-cos 20z)]
8 3 Kz + 1

C j - C I . . . b (1 2{) )]2 = lkot" + lk[b 13 sm20z - Z3 -cos Uz

1 4,u, .+i--' ---- (rx!- rx'l')t"T' [b ls sm 20z -bzs(l-cos 20z)]
8 3 K2 + 1

A I + A I = ko[QI sin 20z - Qz(l-cos 20z)] +k[b I4 sin 20z -bZ4(l-cos 20z)]

1 4,uz .+-.--- (rx!-rxi)t"T' [b 16 sm 20z -bZ 6 (l-cos 20z)]
8 3 Kz + 1

where

(39)

(40)

k and ko are two independent arbitrary real constants.
The complex constants Gz, Ez, Cz and Az can be derived from (34), then from (ll) Hj = 0 and

Fj, Dj , Bj can be achieved. Finally, from (8) the solution for 8 1 = 8 z = 0 is

AI-AI Al +A I
CfJI(Z) = 2 -z+ 2 z+C l zlnz+E]zlnzz+G l zln 3 z

l/JI (z) = Blz+Dlzlnz+Flzlnzz

CfJz(z) = Azz+Czzlnz+Ezzlnzz+Gzzln3z

l/J2(Z) = Bzz+D2z1nz+Fzzlnzz

(41a)

(41 b)

where Al - AlP is an arbitrary imaginary constant, the terms related to the arbitrary real constant
k or ko represent a homogeneous solution. Equation (41) is just the solution for the secondary
paradox, which can be called the secondary paradox solution.

Substituting (41) into (5) and noticing Gj+Gj = 0 yields

(Jjll + irjrO = [1 _eZi(lJ-lI j )] {(Ei + Ej+ 3Gj+ 6iO,cj)[ Inzr+ 2iO In r- OZ + 2( In r+ iO)]

+ (Cj+ Cj+2Ej-4iOjEj+ 120JG,) '(In r+iO+ 1) + (Aj+Aj+ Cj

- 2iOjCj- 40J Ej - 8iOJ G,)} +2i(0 - 0,)Gj[3InZr+6(l- iO,) In r
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-(B2-2BBj +4B}+6iBJ]-4i(B-B)Ej (lnr+l-iBJ-2i(B-BJCj (j= 1,2) (42)

it is observed that the singularities of In2r and Inr appear in thermal residual stresses.
However, numerical analyses demonstrate that the value of 0 3 still possibly equals zero when

0] = 0 and O2 = O. For instance, if B] = 182.7099°, B2 = -1000
, IX = - 0.9989, f3 = - 0.4853, then

0] = O 2 = 0 and 0 3 = 0, thereby the secondary paradox solution (41) is still infinite, this is the
triple paradox.

3.4. The triple paradox solution (when 0 1 = O2 = 0 3 = 0)

From eqns (12a) and (13) we have M,+Mj = 0 and

KI + I
M 2 =r--

1
M j

K2 +
K]+l l-r - 2'0 2'0 2'0

G2 = r K2+
1

G] + K2+
1

[(G j +G])(1-e 11)-4M1(1-e '1+2iB]e II)]

K +1 l-r[- G -GE =r-1-E +-- (E +E)(1-e2iOl)-3' I 1(1-e2iOl+2iB e2iOI)
2 K2 + 1 ] K2 + 1 1 I 2 ]

KI +1 l-r - , _
C2 = r K2 + 1C1+ K2 + 1 [(C] + C] )(1_e210I ) - (E] - E] )(l_e2iO

! + 2iB] e2iO!)

+ (E] + Ed(1- e2iO
! - 2ie] e2iOl ) + G1. l2Bf e2iO ! + M] . 32ief e2iO !]

K]+1 l-r[ - , C-C
A =r--A +--~ (A +A )(1_e2IO!)_ 1 1(1_e2iO!+2iB e2iO !)

2 K2 + 1 I K2 + 1 ]] 2 1

+ C] ; C] (l_e2iOI _ 2iB] e2il)l) + E] . 4Bf e2iO ! + G1. 8ief e2iOI - M 1. 16B1 e2iO!]

2/12
- -- (IX* - IX*)dT

K2 + 1 2 ]
(43)

Introducing (43) in (l2b)-(12e), then separating the real parts from the imaginary parts, we
obtain

b ll '(G 1 + G j ) +b j2 '4M 1i = 0

b21 '(G] +G])+b22 '4M]i = 0

(44a)

(44b)

(45a)
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- - - 3 -
bll '(Cl +C I )+b I2 '(E I -EI)i+b I3 '(EI+EI)+b I4 'l(G I -GI)i

3 -
+b ls 'l(G I +G l )+b I6 '6M l i = 0 (46a)

- - - 3 -
b21 '(CI +Cd+b22 '(EI -EI)i+b23 '(EI+Ed+b24 'l(G I -Gdi

3 -
+b2S 'l(G I +Gd +b26 ' 6M] i = 0 (46b)

- Cl-C I . Cl+Cl EI-EI .
bll'(AI+Al)+bI2' 2 1+b 13 ' 2 +b'4' 2 1

E I +E l 3 - . 3 - .
+b lS ' 2 +bI6'4(GI-Gl)1+bl7'4(GI+GI)+bIS'3MI1

4,u2
= - --I (C(!-C(n~T(l~cos2(2 )

K2+

- CI-Cl . Cl+C I EI-E l .
b2I '(A I +A,)+b22 ' 2 l+b23 ' 2 -+b24 ' 2 I

. E l +El 3 - . 3 - .
+bzs ' 2 +b26'4(Gj-Gdl+b27'4(Gl+GI)+b28'3Mjl

where

I-r
+ ~2 + 1 [168t sin 28 1 '(I-cos 2(2 ) - 128i sin 281'( - sin 282 + 282 cos 2(2 )

-128i cos 281'(l-cos282 +282 sin 2(2 ) -12( sin28 1 +28 1 cos 28d8~ sin 282

-12(I-cos 28 1 +28 1sin 2( 1 )8~ cos 282 -16 sin 28 1 ' 8~ cos 282]}

b27 = ~3 {-S8t cos281+ [r K
] + 1 +2 I-r (I-COS281)J'S8~cos 282

K2 + 1 K2 + 1

(47a)

(47b)
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+ 1-r [160fsin20 1 'sin20z-120fsin20] '(l-cos202-20zsin202)
K2 +1

-120f cos 20] '(sin 20z + 20z cos 20z) -12( sin 20] + 201 cos 20 1 )e~ cos 20z

+ 12(l-cos20 1 +20] sin 20 1 )e~ sin20z+ 16 sin20] . O~ sin 20z]} (48a)

-160i sin20 1 (-sin202+20z cos20z) -160i cos 20 1(l-cos20z+202sin20z)

- 480fO~ cos 20 1 • sin 20z - 4S0fO~ sin 20] . cos 20z

+ 16(1-cos20, -201sin 201)e~ cos20z-16( -sin20 1 +201cos20dO~ Sin20z]}

2{ 4 K]+l 4 1-1 4' .b28 = -3 -SOl cos20] +r--
1

· S02 cos 202 + --1 [l6e) sm20, . sm202
K2 + Kz +

-160f sin 20 I (I-cos 202- 20z sin 20z) - 160f cos 20 1(sin 20z + 20z cos 20z)

-4S0fO~ cos20] 'cos20z+4S0fO~ sin 20 1 • sin20z

-16(l-cos20] -20] sin20])e~ sin 202-16( -sin20] +201 cos20,)0~ COS20z]} (4Sb)

Applying the method similar to that in 3.2 to solve the set of eqns (44)-(47), and noticing
8] = O2 = 0 3 = 0, we get

1 4110
M = i~'--~-(()(*-()(*)~T'~

] 304 Kz + I z ]

GI +G] 2 4112 .
2 = 30

4
• K

z
+ 1 (()(f-()(n~T' [QI sm202-Q2(l-cos20z)]

G]-G, .2 k*A .2 411z (* *)AT [b . 20 b (
2 =1'3 Ll+1304'K2+1 ()(2-()(1 Ll • 13 sm z- 23 1-cos20z)]

£1 +E~ = 2k*[Q] sin202-Qz(l-cos20z)]

2 4117
+ 8:'~2; 1 (()(f-()(n~T' [b 14 sin 202-b24 (l-COS 20z)]

£]-£] = i'2k~+i'2k*[bI3 sin20z-bz 3 (1-cos202)]

2 411z
+ ie-:-' K

2
+1 (()(f-()(n~T'[b]s sin 20z-b2s(l-cos 20z)]
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c] + C~- = 2k[QI sin 202- Q2 (I-cos 282 )] + 2k*[b 14 sin 282 +b24 (1-COS 202)]

+ --~- .. _~1i2-.-«(Xt-(X*)I1T·[b . sin20o-b'6(I-cos202)]= _ +]. ~ I ]6 ~.
04 K2

+ ik[b 13 sin 202- b23 (1 - cos 202)] + ik*[b J5 sin 202- b25 (I - cos 2(2)]

+i--L-.--~1i2_«(l(*_(l(*)I1T· [b sin20 -bo7 (I-cos20o)]= +1. 2 J ·]7 2 ~ "
04 K2

A j + A-; = ko[QJ sin 202- Q2 (1-cos 2fJ2)]

+k[b 14 sin 202_. b24 (1 - cos 2(2)] + k*[b I6 sin 202- b26 (I-cos 2(2)]

] 41i2 * * . b °+ =' 1 «(X2 -(l(I)I1T' [h 18 sm202- 28(1-cos2 2)]
04 /(2+

where

(49)

(50)

k*, k and ko are three independent, arbitrary real constants.
The complex constants M2, G2, E2, C2 and A2can be derived from (43) then from (11) N, = 0

and Hi' Fj, Dj , B, can be achieved. Finally, from (8) the solution for e] = 8 2 = e 3 = 0 is .

A]-A j A,+A t ,,2 3 4
q>j(Z) = 2 z+-----i----z+Cjzlnz+Ejzln z+G l zln'z+M]zln z

t/J I (z) = B] z+ D Jz In z+F] z In 2z+ HI z In 2z

q>2(Z) = A2z+C2z1nz+E2z1n2z+G2z1n3z+M2zln4z

t/J2(Z) = B2z+D2z1nz+F2zln2z+H2zln3z

(5] a)

(51 b)

where A I -A I /2 is an arbitrary imaginary constant, the terms related to the arbitrary real constant
k*, k and ko represent a homogeneous solution. Equation (51) is just the solution for the triple
paradox, which can be called the triple paradox solution.

Substituting (51) into (5) and noticing Mj+:~ = 0 yields

ajo + iT,rll = [1 _e2i(O--OjJ]{(Gi+G~+4MI+ 8iOj M,)[(ln r+ iO)3 +3(1n r+ iOf]

+ (Ei + £1 +3Gj -6iO/;;+ 240} M,)[(ln r+ iO)2 +2( In r+ iO)]

+ (C/+ C';+2Ei-4i(}):'~/-120JG~-32i8}M,)'(In r+ iO+ I)

+ (Ai + A; + Ci - 2iOl·~ - 40JE; + 8iO)~ -- 1601M;) }

+ 8i(0 -Oi)Mi[ln
3r+ 3(1- iO,) In2 r- (02- 200i + 40} + 6iO) In r
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- (()2 _ 2()()} + 4()}) + i()}(()2 - 2()()j + 2()J)] - 2i(() - ())G;[3In2r

+6(1- Wj) In r- (82
- 288j +48} +6i8j )] -4i(8-8)E/ In r

+1-iej )-2i(8-8)C; U= 1,2) (52)

it is observed that the singularities of In3r, In2r and Inr appear in thermal residual stresses.
Numerical analysis demonstrates that the triple paradox probably occurs only when the value

of (8]-82) is in the range of 281.24°-284.34° or 355.55°-358.69° (for plain stress), and 0 4, the
denominator of the solution (51), does not vanish when 0] = O2 = 0 3 = 0, hence the paradox
does not exist for the triple paradox solution (51).

Up till now, all the cases of Ll =P °have been studied and the corresponding particular solutions
presented.

4. The particular solutions when Ll = °
Noticing that if two of the three terms sin 8j, sin 82 and sin(8[ - ( 2) equal zero, the third one

definitely vanishes, there exist the following different circumstances:

4.1.1. The classical solution
Taking C; = D; = E; = F; = G; = H} = Mj = N; = 0, (j = 1,2). Solving eqns (12) and (13), and

from eqns(11) one obtains

A] +A] 1 2111
~~~- = _·_-~-((4-af)LlT

2 Ll] K2+1

K 1 +1A] -A] 1 2112 (l-r)
A 2 =r~+I' 2 +A'~~I(a!-af)LlT l-i·2~~lsin28[

K2 Ll[ K2+ K2+

where

K[+1 l-r 2
Ll[ = r --1 +2--1 (l - cos 28] ) - I = - [f3 - (f3 -a) cos 28d

K2+ K2+ I-a

thus from (8) we have

(53)

(54)
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Fig. 3. The region in which the point (11, fJ) lies when tJ. 1 = O.

where A] - Ad2 is an arbitrary imaginary constant, (55} is just the classical solution.
Substituting (55) into (4) and (5) yields

(J -iT II =(A+A)[I+e2i
(O-6j.)]}

.1' l
r

1 1 ( . = 1 2)
. - 2i16~O ) J ,

(J;6 + l7:;rO =(A;+A;Hl-e I]

(55)

(56)

Equations (55) and (56) are valid only when d, '# 0, on this condition the expression (56),
which is a particular solution of thermal residual stresses, does not contain In r terms, hence the
logarithmic singularity will not appear.

When d, = 0, i.e., cos 2e, = P/(P - ex.), the classical solution (55) becomes infinite, this is a
paradox, and the expression (56), the stresses in which are called thermoelastic constant stress
terms by Ioka et al. (1996), breaks down. In this case the point (ex., P) is in the shaded region shown
in Fig. 3 (except the straight line ex. = 0).

4.1.2. The primary paradox solution (when d] = 0)
Taking E; = Fi = Gi = Hi = Mi = N; = 0, (j = 1,2). From (13) and using d\ = 0 we get

C\+C\ K1+l C,-C, .l-r -.
C2 2 +r--

l
" 2 -1--

1
(C, +C,)sm2e J

K2 + K2 + (57a)
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(57b)

(58)

it is easily observed that eqn (l2d) is satisfied automatically.
Substituting (57) into (12e), then separating the real parts from the imaginary parts, one obtains

C J +C j C J -CJ 4112
a 0 +a ° i = - -- (a*-a*)I1r,(I- cos 28 )

J J 2 J 2 2 K
2
+ 1 2 ] 2

a ° C 1 --t-~ +a ° C, ~~i = __ 4112 ·(a~-IX*)I1Tsin28,
21 2 22 2 K

2
+1 - J "

where

I-r
aJ J = - 2 K2 + f (2 - 2 cos 282 + 282 sin 282 -482 sin 282 cos 282 )

K 1+ 1
+r--

1
- o 2(8 J -82 )sin28 J

K 2 +
I-r Kl+1

a21 = -2--"1- [2(8 J -(2 )(I-cos 28]) +482 sin2 28 j ] + r-- ° 2(8] -(2 ) cos28 j

K 2 + K2 + 1

K 1 + 1
al2 = -r--

J
- 0 2(8 J -82 )cos28]

K2 +
I-r Kl+1

a22 = -2--
1

(2-2cos28 1 -28 1 sin28 J)+r-- 0 2(8 J -82)sin28]
K2 + K2 + 1

Solving eqns (58) we have

C j +C 1 I 4112 .
2 = ~.~ ° K2 + 1(1X!-anI1To [a l2 sm 282 -a22(l-cos 282 )]

C J -C, 1 4112
---2"-- = i~-;o K2 + I (:x!-lXnI1To raj J sin 282 -a21 (l-cos282 )]

where

(59)

(60)
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Fig. 4. The curve for OJ - O2 = 77:, on which the point (tJ:,f3) lies when ~1 = ~2 = O.

(61 )

(62)

Thus complex constant A, can be arbitrary, C2 and A 2 can be derived from (57), then from (11)
D; and Bj can be achieved. Finally, from (8) the solution for ~, = 0 is

((JI (z) = A1z+c,zlnZ} ((J2(Z) = A2z+C2zlnZ}
and

t/JI (z) = B,z+D]zlnz t/J2(Z) = B2z+D2zlnz

(63)(j=1,2)

in which the terms related to the arbitrary complex constant A, represent a homogeneous solution,
eqn (62) can be called the primary paradox solution.

Substituting (62) into (4) and (5) yields

ajr-irjrO = [1 +e2i«(I~I!J)]' [(C;+Cj)(lnr+ie+ 1)+Aj+Aj

+C - 2ieC~] - 2i(e - e .)C - 2C
J 1 'I 1 1 1

ajf/+irjrO = [1_e2i(I!~(li)]' [(Cj+C;)(lnr+ie+ 1)+Aj+Aj

+C-2ieC] -2i(e-e)C1 1.1 .I 1

it is observed that the singularity of In r appears in thermal residual stresses when Cj +Cj =1= O.
However, analyses and calculations demonstrate that the value of ~2 still possibly equals zero

when ~1 = O. For instance, if e, = n/4, e2 = (3n)/(4), ex = - (2n)/(4+ n), fJ = 0, then ~, = 0 and
!l2 = 0, thereby the primary paradox solution (62) is still infinite, this is the secondary paradox.

For e, - e2 = n, the curve on which the point (ex, fJ) lies when ~, = ~2 = 0 is shown in Fig. 4,
md the two branches of it are polar symmetric about the origin O.

1.1.3. The secondary paradox solution (when~, = ~2 = 0)
Taking Gj = Hj = Mj = Nj = 0, (j = 1,2). From (13) and making use of ~, = 0 we get

E, +E) K] + 1 E, -E, .I-r _ .
E2 = 2 ·+r---

l
· 2 -1--

1
(E,+E]sm28,

K2 + K2 +
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C]+C1 K,+1 C]-C] l-r -.
C2 = +r--

1
· 2 -i--

1
(C, +C,)sm20,

2 K2 + K2 +

+ 1-:C [_ (E, _ E, )(1_e2illt + 2iO, e2illt ) + (E] + E])(l-e2ill, - 2iO] e2i111 )]
K2 + 1

AI+~ K]+1 AI-A""; l-r -. l-r[ C]-~
A2 = 2 +r-~l· 2 -i-~I(A]+A])sm20]+-~1 - 2

K2 + K2 + K2 +

·(l-e2illt +2iO I e2Wt )+ C l ;~ (l-e2i11t -2iO] e2illt )+E] ·40f e2illlJ
2J1.2

- ---1 (rx!-anL1T
K 2 + (64)

it is easily observed that eqn (l2c) is satisfied automatically.
Substituting (64) into (l2d) and (l2e), then separating the real parts from the imaginary parts,

one obtains

a,] ·(E, +E,)+a'2 ·(E] -Ej)i = 0

a2l ·(E] +E j )+a22 ·(E, -E,)i = 0

a,] ·(C] +Cd/2+a]2 ·(C j -C])i/2+a13 ·(E] +Ed+aI4 ·(E, -EI)i

4J1.2
= - --1 (rx!-rxnL1T(l-cos20 2 )

K2+

a2l ·(C, +C])/2+a22 ·(C, -~)i/2+a23 ·(E] +E])+a24 ·(E, -E,)i

4J1.2
= - --1 (rx!-rxnL1Tsin20 2

K 2 +
where

·sin20] +402(0] +02)sin20] cos20d-r
K

] +1· 2(Of-ODsin20,
K2 + 1

l-r
a]4 = 2--

1
[(0]-02)cos20 1 ·(l-cos20])-(0] +02)sin220 jK2+

(65)

(66)
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a24 = 2 l-r [- (1-cos28d+(8[ +82)sin28 1 -282 sin28 1 cos28 1
K2 + 1

K[ + 1
+28[82cos48 1 -28f(1-cos 28[)] +r--

1
· 2(8f -8n cos28 1

K2+

Applying the method similar to that in 3.2 to solve the set of equations (65)-(66), and noticing
that when Ll I = Ll2= 0, the coefficients all and a12 do not vanish simultaneously, we get

- I 4J1?
E[ +E[ = A·----l (lXi-lXnLlT' [a[2 sin 282-a22(I-cos282)]

L.13 K2 +

E I - E I = i Al . 4J1
21 (lXi -lXnLlT' [a]] sin 282 - a21 (I-cos 282 )]

L.13 K2 +
C] +C 1 I 4J12 * * .2 = k Oal2 + A'--l (1X 2 -1X[)LlT' [a14 sm282-a24 (I-cos282)]

L.13 K2 +

(68)

(70)

where

l-r{ l-r= 2--~1 2~-1 [4(I-cos28j)2-2(I-cos28 1)sin28[ '(8 1 -82+282cos28[)
K2 + K 2 +

- 4(I- cos 28[) cos 28 1 '(8f - 8~ + 28~ cos 2(1) - 48 182 (8 [ + ( 2) sin 28 I cos 28 1

K[+l }'(I- 2 cos 2( 1)] - r ~-l . 2(8 1 - ( 2) . 2(I -cos 28 1)[2(8[ + ( 2) cos 28[ + sin 28d
K 2 +

8 { ~{3= 2 21X 2 + 1X[{3(8 1 + 82 ) + (8[ - ( 2 )] sin 28 1 + -{3 [{3(8f + 8n
(I-IX) -IX

+ (8f - 8D] + 2{3({3 + 1X)8[ 82(8[ + ( 2) sin 28[ } (69)

go is an arbitrary real constant.
The complex constant Al can be arbitrary, E2, C2 and A2 can be derived from (64), then from

(1 I) Fj, Dj and B j can be achieved. Finally, from (8) the solution for Ll1 = Ll2 =°is

ipl(Z) = A[Z+CIZlnZ+EI Zln2Z} qJ2(Z) = A2z+C2z1nz+E2zln2z
and

l/tl (z) = B,z+D[zlnz+F]zln2z l/t2(Z) = B2z+D2z1nz+F2z1n2z
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in which the terms related to the arbitrary complex constant AI or the arbitrary real constant ko
represent a homogeneous solution. Equation (70) can be called the secondary paradox solution.

Substituting (70) into (4) and (5) yields

(Jir-irjr8 = [I +e2i
(II-O j )]. {(Ei+Ej) [ln 2r+2iOlnr-tF +2(Inr+iO)]

+ (Ci + Ci+2Ej -4i8jE)'( In r+i8+ I) + (Ai+Aj + Ci

-2i8iCi -48;E)} -4i(e-ej)E/lnr+ I -ie) -2i(e-e)Ci

-4Ei(lnr+ie+ I)-2Ci

(Jill + i1:jr8 = [I - e2i
(O-lI i )] • {(Ei+E) [ln2 r+2ie In r - 02 +2(In r+ ie)]

+ (Ci + Ci+2Ei -4iOjE)' In r+i()+ I) + (Ai+Ai+ Cj

- 2i(). C- -4()2E.)} -4i«()- () )K(In r+ 1- ie) - 2i«() - () )C (j = 1,2) (71)1.1.11 .1.1 .I .1.1

it is observed that the singularity of In2r appears in thermal residual stresses when Ej +E} # 0.
Numerical computations demonstrate that the value of .13, the denominator of the solution (70),

does not vanish when .11 = .12 = 0, thereby the paradox does not exist for the secondary paradox
solution (70).

4.2. sin el # 0, sin e2 = °
In this case ()l # n, ()2 = -no Taking Ci = Di = Ei = Fi = Gi = ~ = Mi = ~ = 0, (j = 1,2),

solving eqns (12) and (13), and from eqns (II) one obtains

_ K I + I 2/12 * *Al +A 1 = 0, A 2 - r--
I

Al - --I (cx 2 -cx1)L\T
K2 + K2 +

4/12
B] = 0, Bo = -- (cx~ - cx*)L\ T

~ K2 +I - I

thus from (8) the solution is

lpl (z) = A1Z} and lp2(Z) = A 2Z}

Ijtl (z) =° t/J2(Z) = B2z

(72)

(73)

where Al is an arbitrary imaginary constant.
It is evident that the thermal residual stresses corresponding to the particular solution (73)

vanish in material I and on the interface.

4.3. sin ()j = 0, sin e2 # °
In this case ()I =n, ()2# -no Taking Cj=Dj=Ej=Fj=Gi=~=M}=Ni=O, (j= 1,2),

solving eqns (12) and (13), and from eqns (II) one obtains
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K2 + I 4/12 *B = -~----'--(a2-an~T,
I r(Kl+l) K2+ 1

thus from (8) the solution is

- A I - A~ ~ Al +~ ~1
({J I (z) - 2 "' + 2 ..

l/JI (z) = BIz

(74)

(75)

where A1-Ad2 is an arbitrary imaginary constant.
It is evident that the thermal residual stresses corresponding to the particular solution (75)

vanish in material 2 and on the interface. Actually, if we exchange the signs I and 2 of the two
dissimilar materials and reverse the rotation direction of e, the situation of 4.3. is consistent with
that of 4.2.

4.4. sin 81 = 0 and sin 82 = 0

In this case ()I = n, 82 = -n, hence the model becomes the interfacial crack. Taking
Cj = D j = Ej = Fj = Gj = H j = M j = N j = 0, (j = 1,2), solving eqns (12) and (13), and from eqns
(11) one obtains

K,+l 2/12 * *A o = r ---- A - ~- (cxo -cx )i1T
~ K2 + I I K2 + I ~ I

thus from (8) the solution is

({Jl(Z)=AIZ} and ({J2(Z)=A 2Z}

l/JI (z) = BIz, l/J2(Z) = B 2z

(76)

(77)

where A1 is an arbitrary complex constant, its related terms represent a homogeneous solution.
Substituting (77) into (5) yields

Ojo+i'r jrO =(Aj +Aj)(l-e2
;11) (j= 1,2) (78)

It is observed that the thermal residual stresses corresponding to the particular solution (77) vanish
on the interface.

Up till now, all the cases of ~ = 0 have been studied and the corresponding particular solutions
presented.

5. Conclusion

In this paper, all the cases of the thermal residual stress field near the apex in dissimilar materials
bonded with two arbitrary angles are researched theoretically, and the corresponding particular
solutions provided. The main results are as follows:
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(1) Thermal residual stresses are proportional to the temperature difference ~T and the differ
ence of the thermal expansion coefficients (ex2 - ex]) for plane stress or [(1 +V2)ex2- (1 +vaextl for
plane strain. Moreover, thermal residual stresses are dependent on the geometry angles tI], O2 and
the Dundurs parameters ex, {J, and f.l2/(K2+ 1) or f.ll/(Kl + 1). Especially, when tI], O2and ex, {J satisfy
the definite relations, logarithmic singularities develop.

(2) For the case of sin til· sin°2 • sin(OI - ( 2) # 0, when 0] = 0, i.e., the expression (21) vanishes,
the singularity of In r appears in thermal residual stresses; when 0] = O2 = 0, i.e., the expressions
(21) and (28) vanish simultaneously, the singularities of In2r and lnr appear; furthermore, when
0 J = O2 = 0 3 = 0, i.e., the expressions (21), (28) and (40) vanish simultaneously, the singularities
of In3r, In2r and In r appear.

(3) For the case of sinO I • sin°2 • sin(tl l- ( 2) = 0, logarithmic singularities also probably develop
in thermal residual stresses. Under the circumstances of 0\ - O2 = n or 2n, and OJ # n, O2 # -n,
when ~] = 0, i.e., the expression (54) vanishes, the singularity of In r appears; moreover, when
~J = ~2 = 0, i.e., the expressions (54) and (61) vanish simultaneously, the singularities ofln2r and
In r appear. Especially, it should be pointed out that if

then the terms with the highest order of the power of In r, i.e., the terms of (in r)l for ~J = 0, ~2 # °
and the terms of (in r)2 for ~l = ~2 = 0, will vanish from the expressions of stresses, and the highest
orders of the power oflnr then become (inr)o and (inr)l, respectively.

(4) The logarithmic singularities of thermal residual stresses at the apex in bonded dissimilar
materials have intimate relations with paradox problems. It is shown that by constructing the
particular solution sequences in the form of complex functions about (inzY (n = 1,2, ... ), and
taking many enough terms in the sequences to make linear combinations for all the complex
potentials, we can solve multiple paradox problems succinctly and effectively, the resolution of the
problem here is just an outstanding example for the applications of the above method.
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